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We study the finite-size scaling behavior of two-point correlation functions of 
translationally invariant many-body systems at criticality. We propose an 
efficient method for calculating the two-point correlation functions in the 
thermodynamic limit from numerical data of finite systems. Our method is most 
effective when applied to a two-dimensional (classical) system which possesses 
a conformal invariance. By using this method with numerical data obtained 
from exact diagonalizations and Monte Carlo simulations, we study the spin- 
spin correlations of the quantum spin-l/2 and -3/2 antiferromagnetic chains. In 
particular, the logarithmic corrections to power-law decay of the correlation 
of the spin-l/2 isotropic Heisenberg antiferromagnetic chain are studied 
thoroughly. We clarify the cause of the discrepancy in previous calculations for 
the logarithmic corrections. Our result strongly supports the field-theoretic 
predicion based on the mappings to the Wess-Zumino-Witten nonlinear 
a-model or the sine-Gordon model. We also treat logarithmic corrections and 
crossover phenomena in the spin-spin correlation of the spin-3/2 isotropic 
Heisenberg antiferromagnetic chain. Our results are consistent with the Affleck- 
Haldane prediction that the correlation of the spin-3/2 chain exhibits a cross- 
over to the same asymptotic behavior as in the spin-l/2 chain. 

KEY WORDS: Correlation functions; finite-size scaling; conformal invariance; 
quantum spin chains: logarithmic corrections; crossover. 

1. INTRODU(;TION 

Techniques related to finite-size scaling have become increasingly impor- 
tant in statistical mechanics and related fields. Since Fisher introduced the 
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finite-size-scaling hypothesis (~''-~ for critical phenomena, it has been applied 
to various problems in extrapolating quantities for finite systems to those 
in the thermodynamic limitJ 3-6~ Although the basic principle of finite-size 
scaling is simple and universal, it is not obvious how one should apply it 
in a concrete situation. A number of concrete methods have been proposed 
to extrapolate thermodynamic quantities from given numerical data for 
finite systems. 3 

In this paper, we will concentrate on the finite-size scaling behavior of 
a two-point correlation function of antiferromagnetic quantum spin chains 
at criticality (zero temperature). Several extrapolation methods 19-~ to treat 
two-point correlations for such systems have been proposed. One of the 
main issues in these studies is the logarithmic corrections to power-law decay 
of the spin-spin correlations at the SU(2) symmetric pointJ 12-15"11"16"17) 
However, there is some discrepancy in the different calculations for the 
logarithmic corrections. 

Here we propose an efficient method for extrapolating the correlations 
for the finite systems to infinity volume, assuming a finite-size scaling 
hypothesis. In this method, we determine a correlation function for infinite 
volume by fitting numerical data of the correlations to a finite-size scaling 
form of the correlation functions for the finite systems. Our method is most 
effective when applied to a two-dimensional system which possesses a con- 
formal invariance. By using this method with numerical data obtained from 
exact diagonalizations and Monte Carlo simulations, we study the spin- 
spin correlations of the quantum spin-l/2 and -3/2 antiferromagnetic 
chains, which are believed to be conformally invariant. 1~8~ 

We first demonstrate the efficiency of our extrapolation method for the 
spin-l/2 quantum chains. In particular, the logarithmic corrections to 
power-law decay of the correlation of the spin-l/2 isotropic Heisenberg 
antiferromagnetic chain are studied thoroughly. We clarify the cause of the 
discrepancy in previous calculations for the logarithmic corrections. Our 
results strongly supports the field-theoretic prediction based on mappings 
to the continuum models such as the Wess-Zumino-Witten nonlinear 
a-model ~19) or the sine-Gordon modelJ -'~ 

Second, we treat logarithmic corrections and crossover phenomena in 
the spin-spin correlation of the spin-3/2 isotropic Heisenberg antiferro- 
magnetic chain. Our results are consistent with the Affleck-Haldane 
predicion ~23'24) that the correlation of the spin-3/2 chain exhibits a cross- 
over to the same asymptotic behavior as in the spin-l/2 chain. 

3 See, for example, refs. 3 and 7 and work cited therein, and recent workJ s~ 
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Although we do not treat a concrete system which does no possess a 
conformal invariance in this paper, we believe that our method is useful for 
studying correlations of more general many-body systems numerically. We 
hope to be able to report about such studies in the near future. 

In the rest of the present section, we give a brief overview of the topics 
studied in this paper. The corresponding details can be found in the body 
of the paper. 

1.1. Finite-Size Scaling for Correlations at Criticality 

Before describing our extrapolation method, we briefly review the idea 
of finite-size scaling. Consider a translationally invariant many-body 
system on the d-dimensional parallelepiped of common finite side L with 
periodic boundary conditions in d' (~<d) dimensions but of infinite extent 
in the remaining d -  d' dimensions. In the case of the quantum spin chains 
which we will treat, we take d ' =  1 for the corresponding two-dimensional 
(d=  2) classical systems derived by the mapping based on the path integral 
idea. (See, for example, refs. 25-27.) We assume that, at criticality, there is 
no characteristic length except for L. 

The finite-size scaling hypothesis states C28'4~ that a two-point correla- 
tion at criticality satisfies 4 

(~(r l)  ~(r2))L 
(~(rl)  ~(r2))~ = Q(r) (1.1) 

Here ( . . . ) L  and ( . . . ) ~  are the thermal expectations for the systems 
with finite L and L = o o ,  respectively, and r =  I r 2 - r l l  is the distance 
between the two points r~ and r 2. The scaling function Q is assumed to be 
a function of a single variable 5 r := r/L. The finite-size scaling hypothesis 
(1.1) plays a fundamental role throughout the present work. 

Consider a two-point correlation (~(rl)~b(r2))L at criticality, where 
we take ( r ~ -  r2) parallel to one of the finite sides of the parallelepiped. We 
rewrite the scaling relation (1.1) as 

with 

(~b(rl) ~(r2))L -- Q(r)(r  ~(r2)) (1.2) 

F 
~. ] d--2+r/  

Q(r) := [ x--~j (1.3) 

4 Throughout this paper, we use the symbol ~ when we drop higher order corrections. 
5 The symbol := signifies definition. 
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where q is the (unknown) critical exponent of power-law decay of the 
correlation 6 <e)(rl)q~(r2)>o~constxr -a+2-q. Here X(r) is a new 
unknown function. It can be expanded in a Fourier series as 

X(r) = a. sin(~r) + a s sin(3zcr) + as sin(5zcr) + .. .  (1.4) 

because of the translation invariance. When we are dealing with a two- 
dimensional conformally invariant system of an infinitely long strip with 
finite width L, the funcion X(r) becomes remarkably simple. The well- 
known result in conformal field theories guarantees that all the Fourier 
coefficients in (1.4) except for al are vanishing, and the function X(r) takes 
the Cardy form 129-32~ 

1 
A"(r) = - sin(~r) ( 1.5 ) 

7~ 

with r = r/L. 

1.2. Extrapolation Method of This Paper 

Our extrapolation method is as follows. Suppose, for example, that the 
asymptotic behavior of the correlation function is given (in advance of 
numerical work) as 

A 
<~b(r~) ~ ( r 2 ) >  ~ ~ ra_2+,, (1.6) 

where A and q are unknown quantities. By substituting (1.3) and (1.6) into 
(1.2), the assumed scaling relation becomes 

A 
< ~b(r,) ~(r2)>L X Q(r)ra_2+ q 

1 I d - 2 + q  

=A LXO'/L) (1.7) 

For  a given set of numerical data for <~b(rl) t~(r2)> L with various ( r l - - r2 )  
and L, we can determine the unknown quantities 7 A, q, a~, a3, a 5 .... by fit- 
ting the data to the formulas (1.7) and (1.4). 

6 Throughout  this paper, we use the symbol ~ for expressing asymptotic form. 
7 That  there are infinitely many fitting parameters may be discouraging. We expect, however, 

that taking only a finite number  of the parameters provides a reliable approximation. We 
hope to be able to report about such approaches in the near future. 
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An obvious advantage of our extrapolation method is that we treat the 
set of numerical data as a whole, and the desired quantities (such as q) are 
extracted through a sh~gle fitting formula (1.7). This should be compared 
with most of the existing extrapolation methods, in which one has to go 
through more than one fitting procedure. 8 

When applied to a two-dimensional conformally invariant system at 
criticality, our method becomes extremely effective. By substituting (1.5), 
the scaling relation (1.7) becomes 

(~(rl) ~b(r2))L ~A I 7~ ]" 
L sin(m'/L)J 

(1.8) 

Since the only unknown quantities in the right-hand side are A and 1/, 
we can read off these two quantities from given numerical data of 
(~b(r,) ~(r,_))L for various ( r l - r 2 )  and L. Let us again stress that all we 
have to perform here to get the critical exponent r/ is a simple two- 
parameter fitting of the given numerical data. There is no need of extra- 
polating finite-volume correlations to infinite volume and then estimating ~/ 
by a log-log plot. 

1.3. Results for S p i n - l / 2  Anisotropic and Isotropic Chains 

1.3.1. XY Chain. For the longitudinal correlation (S:~S~+,.) x r  of 
the X Y  chain, we demonstrate that the scaling relation (1.2) with (1.3) and 
(1.5) holds exactly as in (3.2) and (3.3) below. In particular, the correla- 
tions (3.2) for finite sizes have exactly the form of (1.8) for any finite L and 
r > 0, except for the even-odd oscillation ( - 1 )r. The scaling relation for the 
transverse correlation (S;:S~"+,.)xr~.~ is also shown to hold within numerical 
accuracy, by using the exact numerical values of/.~-".v" ,~xv for finite L \ ~ i  ~ i + r / L  

by Kaplan et al. ~~ 

1.3.2. X)(Z Ant i fe r romagnet ic  Chain. The scaling function Q 
of (1.3) with (1.5) for the transverse correlation < S~"S,"+r > xxzo~ of the X X Z  
antiferromagnetic chain coincides with numerical one by Kaplan et al. ~'~ 
when one uses the predicted value by Luther and PescheP 33~ or the numeri- 
cal vale by Takada and Kubo 134"35) as the critical exponent q. 

s For example, one first extrapolates correlations of finite volumes to infinite volume for each 
distance r by using the finite-size scaling hypothesis (1.1). Then one estimates the critical 
exponent q by a log-log plot or by introducing an ad hoc fitting function. 
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1.3.3. Isotropic Heisenberg Antiferromagnetic Chain. 
Unlike the above X Y  and X X Z  chains, the spin-spin correlation of the 
spin-l/2 isotropic Heisenberg antiferromagnetic chain does not exhibit 
power-law decay because there exists a marginally irrelevant operator in 
the Hamiltonian. According to the renormalization group analysis, 9 the 
correlation is believed to behave as 

E , ~ j  ~ j +  r /  o~ ~ . -  x log (1.9) 
r 4~2r  2 

for large distance r, where A, r 0, and a are constants. The existence of such 
a logarithmic correction was first confirmed numerically by Kubo et al. ll2~ 

The validity of the second term in (1.9) was confirmed numerically by 
Sandvik and Scalapino/I~l 

As for the value of the exponenta, however, there a discrepancy arose 
as follows. According to the renormalization group analysis for effective 
continuum models such as the Wess-Zumino-Witten (WZW) model t191 or 
the sine-Gordon model, ~a~ the critical exponent a is given by 1/2. The 
numerical works ~12-151 based on the finite-size scaling hypothesis (1.1) 
predicted values of a which are significantly less than 1/2, or even vanish- 
ing. Instead of using the standard scaling hypothesis (1.1), Sandvik and 
Scalapino t ~  introduced a certain relation between correlations for finite 
volume and that for infinite volume ~~ and obtained numerical results which 
supported the field-theoretic value a = l / 2 .  In recent work tl6"17~ we 
obtained a numerical result which also supported a = 1/2, where we slightly 
modified the form of the scaling function Q proposed by Kaplan et al. ~~ 

In this paper, as approximate correlations for finite volume, we 
propose 

L = A ( - - 1 )  ~ x log , (1.10) (S.iX.5).)xxx,~ X ]__ r L 1 1 
rL 4n 2 r~_ 

which recovers (1.9) in the infinite-volume limit L T Go, where the right- 
hand side is given by replacing the distance r in (1.9) by the effective dis- 
tance rL := ( L / n ) s i n ( n r / L )  for finite volume, except for the factor ( - 1 )  r. 
This form (1.10) is the extension of the finite-size scaling form (1.8) of 
finite-volume correlations to the case that there appear logarithmic correc- 
tions as deviations from a conformal invariance. We determine the 
unknown quantities A, ro, and a in (1.10) by using numerical data of exact 

9 See, for example, the review in ref. 18. 
t0 They argued that the reason for the discrepancy is that the logarithmic correction in the 

correlation 11.9) makes the finite-size scaling hypothesis (1.1) invalid. 
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diagonalizations and Monte Carlo simulations. As a result, we obtained 
a -0 .4 7 ,  which strongly supports the field-theoretic value a = 1/2. 

Further, we propose a new finite-size scaling function 

Q(~,L).  [sin(nz)J 
(1.11) 

where r=r/L. The relation between this scaling function and the 
asymptotic form of the correlation (1.10) is stated in Sections 2 and 3.3. 
The crucial feature of the scaling function ( 1.11 ) is that the "effective critical 
exponent ''~ t/e~(L) depends on the finite size L of a system, to take into 
account the deviations from a conformal invariance. Clearly, unlike the 
standard scaling form (1.1), the scaling function Q of (1.11) is not a function 
of the single variable r = r/L. We determined the effective critical exponent 
plea(L) from the spectrum of a transfer matrix of the six-vertex model corre- 
sponding to the present spin-l/2 isotropic Heisenberg antiferromagnetic 
chain by assuming a conformal invariance of the spectrum of the transfer 
matrix. In Section 3.3, we show that, for extrapolating correlation functions 
for finite volume to infinite volume, our finite-size scaling function (1.11) is 
more efficient than previous scaling functions with the standard form (1.1). 
Further, comparing a previous scaling function with our scaling function 
( 1.11 ), we conclude that the discrepancy in the previous calculations for the 
exponent cr of the correlation (1.9) is due to ignoring the finite-size correc- 
tions of the effective critical exponent ~ d L )  in the scaling function (1.11 ). 

1.4. Results for the Spin-3/2 Isotropic Heisenberg 
Antiferromagnetic Chain 

It was conjectured by field-theoretic arguments that the spin-spin 
correlation of the spin-3/2 isotropic Heisenberg antiferromagnetic chain 
exhibits the same asymptotic behavior as in the spin-l/2 chain t37"381 but 
with crossover phenomena/23"24~ Much numerical work has been devoted 
to examining this conjecture. ~14"39-a2~ However, it is still not clear how the 
correlation of the spin-3/2 chain behaves. 

We apply to the spin-3/2 chain the technique developed for the spin- 
1/2 chains. Our results appear to be consistent with the Affieck-Haldane 
conjecture/TM In particular, we find clear evidence of the crossover that the 
effective critical exponent t/err varies with distance. Although we cannot give 
a conclusive result, we believe that our formulas and results will be useful 
for future studies of crossover phenomena, in particular, for experimental 
observations in a one-dimensional isotropic spin-3/2 antiferromagnetic sub- 
stance.~ 43,44) 

822/83/3-4-25 



668 Koma and Mizukoshi 

1.5. Outline of the Paper 

The present paper is organized as follows. In Section 2, we describe 
our method in a general setting. In Section 2.2, we combine our general 
idea with the conformal invariance. It turns out that the scaling function Q 
of (1.3) for two-point correlation at criticality can be completely determine 
as in (1.5). In Section 3, we apply our method to the quantum spin-l/2 
antisotropic ( X Y  and X X Z )  and isotropic Heisenberg antiferromagnetic 
chains. In particular, the logarithmic corrections to power-law decay of the 
spin-spin correlation of the spin-1/2 isotropic Heisenberg antiferromagnetic 
chain are thoroughly studied with the use of zero-temperature Monte 
Carlo simulationsJ ~-'1 The technique developed for the spin-l/2 chains is 
applied to the spin-3/2 isotropic Heisenberg antiferromagnetic chain in 
Section 4. The crossover effect in the correlation is discussed. 

Appendix A is devoted to a brief review of the zero-temperature 
Monte Carlo simulation introduced by Kaplan et al. ~ ~o~ The application to 
the spin-l/2 isotropic Heisenberg antiferromagnetic chain is discussed in 
Appendix B. We mainly describe some crucial modifications introduced in 
our earlier work. 116,17) In Appendix C, we summarize some useful techniques 
in the renormalization group method for calculating logarithmic corrections 
and a crossover function. Appendix D is devoted to a review of Cardy's 
transfer matrix argument for a two-dimensional conformally invariant 
system. ~3~ In Appendix E, we discuss the relation between a logarithmic 
correction to power-law decay of a two-point correlation and a logarithmic 
correction in an energy spectrum from the point of view of conformal field 
theories. Appendix F is devoted to a calculation of the effective critical 
exponent nen- of the spin-spin correlation of the spin-l/2 isotropic anti- 
ferromagnetic Heisenberg chain. In Appendix G, we treat the two-point 
correlation function of a one-dimensional quantum system at low tempera- 
tures under an assumption of conformal invariance. 

2. FINITE-SIZE SCALING FOR CORRELATIONS 

2.1. General Approach 

In the present section, we describe our finite-size scaling method for 
calculating two-point correlation functions at criticality in a general setting. 

Consider a translationally invariant classical system on the d-dimen- 
sional parallelepiped of common finite side L with periodic boundary con- 
ditions in d' (~<d) dimensions but of infinite extent in the remaining d - d '  
dimensions. We assume that, at criticality, there is no characteristic length 
except for L. 
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We first focus on the simplest situation, where the two-point correla- 
tion (~b(0)~(r))o: in the limit L]" oo at the criticality behaves as 

A 
(~b(O) ~b(r)) ~, ~ ra_2+,, (2.1) 

for large distances r = [r[, where A and r/are the critical amplitude and the 
critical exponent, respectively. 

For finite size L, consider the two-point correlation (~(0) ~(r))L with 
r parallel to one of the finite sides of the parallelepiped. Let us write the 
correlation in terms of an unknown function X(r, L) as 

[ 1 ] a - 2 + ,  
(~b(0) ~ ( r ) ) L = X  LX(r/L, L) (2.2) 

where A and Jl are determined in (2.1). From the translation invariance of 
(~b(0)~(r))L, we find that X should satisfy X( r+  1, L)=X(r,L) and 
X ( - r ,  L ) = X ( r ,  L) for any r and L. By comparing (2.2) with the critical 
decay (2.1), we observe that 

X(r, L ) ~ r  (2.3) 

should hold for large L and small r ,~ 1. 
The relation (2.3) motivates us to state the assumption that, for large 

enough L, the function X(r, L) essentially depends only on the variable r. 
We thus drop the L dependence from X(r, L) and write it as X(r). (We will 
soon discuss how to take into account a possible L dependence of X as a 
correction. ) 

This construction straightforwardly extends to general forms of power- 
law decay. As an example, let us consider 

1 1 
(~(0) ~(r))~., ~ A j( - 1)" ra_ 2 +,l----------- Z + A2 rd_ 2 +,n (2.4) 

which is a typical behavior in quantum spin systems. Then the correspond- 
ing correlation'for finite width L can be written as 

(2 )  (r (r) (2.5) / L 

with 

F 1 1 d-2+ql 
G~'(r) _~ A, [ LX,-(r/L)] (2.6) 

for 1 = l, 2. Again we have dropped the possible L dependence of Art. 
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Finally we discuss how one can take into account the possible L 
dependence of X(r, L), which has been neglected so far. Since the function 
X(r, L) is expected to be L-independent for large L, we expect that it can 
be expanded in powers of L - l  as 

X ( r , L ) = X ( r ) + 7 ( ~ l ~ ( r ) x L - l + Y ( I Z ~ ( r ) x L - 2 +  . . .  (2.7) 

Then the correlation of finite L can be written as 

(~b(0) ~b(r)) z = A [ L X - ~ I  a - 2 + '  

• [1 +X~l~(r) •  +X~2~(r) •  ... ] (2.8) 

In addition, it is believed from numerical w o r k  ~45'46'1~ that there appear 
only even powers of L - l  in the series (2.8). As we will see later (in Sec- 
tions 3.1 and 3.3) in concrete examples, this property makes extrapolation 
procedures based on (2.8) quite efficient. 

2.2. Conformal Invariance in Two Dimensions 

The function X introduced in the previous section is not universal in 
general situations. But if We are dealing with a two-dimensional continuum 
system with conformal invariance, ~47-5~ then the function X has the 
universal form 

1 
X(r) = -  sin(nr) (2.9) 

7~ 

with r = r/L.  This is nothing but the well-known result of Cardy, 129-321 but 
we discuss its derivation for the sake of completeness. 

We begin with a quick review of conformal invariance in two dimen- 
sionsJ 48-5~ We denote the two-dimensional coordinate r = (Yl, Y2) by 
the complex number z = Y t + iy2. We consider a primary field ~b which 
transforms covariantly under an arbitrary conformal transformation 
w = f ( z )  as '48~ 

(~b(z') ~(z)) = [ f ' ( z ' ) ]  h [ f ' (z ' ) ] / ;  [ f ' ( z ) ]  h [f '(z')]/7 (~b(w') ~b(rv)) (2.10) 

where .. .  indicates complex conjugate, f '  stands for the derivative of the 
function f, and h and/~ are the conformal dimensions. (/~ is not  neccesarily 
the complex conjugate ofh.) 
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Following Cardy, 129-31~ we consider the conformal mapping 

w = L l o g z  (2.11) 

which maps the whole z plane onto the surface of a cylinder. By this 
mapping, the correlation decaying by a power law ~ 

< q~(z') ~b(z)> ~ = ( z - z ' ) - Z " x  ( f - f ) - , _ r ,  (2.12) 

on the whole z plane is transformed into 

<r ~b(w)>z = ~sinh[r~(w-w' ) /L]~  sinh[ ~(~i~- ~V)/L] ] 

(2.13) 

where r /= 2(h + ]l). 
By setting w - w ' =  ir, the correlation (2.13) becomes 

e-~,,,,,-r,,x[ 5 .]" (~b(0) r  L = L sin(~r/L)J (2.14) 

Clearly, in the limit L Too for a fixed r, we recover 

1 
(q~(0) r e-i~h-I;I x - -  (2.15) 

i.q 

These imply that the function X is given by (2.9) and that we exactly have 
the scaling law 

Q := sin(~zr/L)J ( r  ~b(r)) 

2.3.  T h r e e  or  H i g h e r  D i m e n s i o n s  

For a system in dimensions higher than two, or a system without con- 
formal invariance, the simple scaling law (2.16) is not valid. From the 
general properties of the periodicity X ( r +  1 ) = X ( r )  and the asymptotic 
behavior (2.3), we can Fourier expand X for r t> 0 as 

X(r) = al sin(r~r) + a 3 sin(3nr) + a5 sin(5nr) + .. .  (2.17) 

~ Because of the conformal invariance, any two-point correlation function for primary fields 
must take the form (2.12) on the whole plane. ~47'4s~ 
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with the constraint 

Z a2 . . . .  1 x (2m-- l ) rc=  1 (2.18) 

Note that there appear only odd terms in the Fourier series. 
Although we do not yet have concrete examples, we expect that the 

representation of X as in (2.17) with the constraint (2.18) provides the basis 
for an efficient numerical method for calculating two-point correlations. 

2.4. Logarithmic Corrections to Power-Law Decay of 
Correlations 

As is well known, the existence of a marginally irrelevant operator in 
a Hamiltonian leads to a logarithmic correction to power-law decay of 
correlations as 

[('01 - -  x l o g  ( 2 . 1 9 )  
Fd--  2 + ~1 

where A, to, and a are constants. (See Appendix C.2 for details.) Assuming 
the decay property (2.19), the same strategy as in Section 2.1 yields 

[ 1 la-2+"xI log[LX'(r /L) l }  "" 
(q~(0) ~b(r)) L ~ A [LX(r /L)J  . L ro J (2.20) 

where we have dropped the possible L dependence of the functions X and 
X'. From (2.19) and (2.20), we have 

for a fixed r = r/L and large L, where higher orders of logarithmic correc- 
tions have been neglected. 

Here if X' = X, then we have 

with 

[ ~ ]  d--2 
Q(r, L ) : = |  

t X(r)J 

+,Io~LI (q~(0) ~b(r)>L 

- < ~ ( o )  ~ ( r ) >  ~ 
(2.22) 

O" 
I/en{ L) ~ l? (2.23) 

log(L/to) 
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This scaling function Q is no longer a function of a single variable r = r/L. 
The exponent Jtr can be interpreted as the effective critical exponent (36) 
which appears in the renormalization group analysis when there is a 
marginally irrelevant perturbation. (See Appendix C.2 for details.) Actually, 
effective critical exponents q~n(L) having the form (2.23) were observed in 
energy spectra of several systems of infinite L, (51-57"22) based on conformal 
field theories. (ss'~9) From these observations, we conjecture X ' =  X. 

Under the assumption X ' = X ,  the correlation function (2.20) with 
finite L becomes 

[ '  ]'-:*" { ~ 
(q~(O)~(r))L~A LX(-r/L) x log L ro J )  

In particular, in two dimensions, we expect that this function X is given by 
(2.9) as in Section 2.2. Of course, the existence of logarithmic corrections 
breaks the conformal covariance (2.10) of a correlation function. This 
implies that we cannot easily apply the form (2.9) to X of (2.24). But it is 
believed that deviations from the conformal invariance appear only as 
logarithmic corrections when a perturbation in the Hamiltonian is 
marginally irrelevant. (19) 

The valicity of the approximation of correlation (2.24) with (2.9) and 
the scaling function (2.22) with (2.9) will be examined for the spin-I/2 
isotropic Heisenberg antiferromagnetic chain in Section 3.3. Our numerical 
results support these conjectures. 

3. APPLICATIONS TO SPIN- l /2  ANISOTROPIC AND 
ISOTROPIC ANTIFERROMAGNETIC CHAINS 

We apply our method to the spin-spin correlations of the Heisenberg 
antiferromagnetic chains with spin 1/2 and 3/2 in this and the next section, 
respectively. The Hamiltonian is given by 

L 

dfL= ~ (S)S)'.+, + S)YS)'.+, + AS~S~+,) (3.1) 
j = l  

where zl ~ R is the anisotropy parameter. We assume that L is even, and 
impose a periodic boundary condition SL+~ =S~. Here Sj is the spin 
operator at site j with (S j)2 = S(S + 1) (S = 1/2, 3/2). We denote by ( ... )L 
and ( ... ) ~  the ground-state expectations for the systems with finite L 
and L = or, respectively. As is well known, a one-dimensional quantum 
system with finite length L at zero temperature is mapped to a two-dimen- 
sional classical system of an infinitely long strip with width L by using the 



674 Koma and Mizukoshi 

path integral idea (see, e.g., refs. 25-27). By using this mapping, we apply 
our method in the previous section to the two-dimensional classical system 
corresponding to a quantum spin chain. Then we assume that the long- 
distance behavior of the correlations of the system can be described by a 
conformal field theory as in Section 2.2. 

3.1. S p i n - l / 2  X Y  Chain 

We begin with the simplest case of the spin-l/2 XY chain. The 
Hamiltonian given by (3.1) with S =  1/2 and A = 0  is transformed into a 
free-fermion model on the lattice by using the Jordan-Wigner transforma- 
tion. (59'6~ The continuum limit of the system is a conformally invariant 
free-fermion model. We can easily calculate the spin-spin correlation func- 
tion in the z direction as 

1 1 2 1 2} 
(S~S~+r)x"=2{(-lY[Lsin(rcr/L)] -[Lsin(rcr/L)] (3.2, 

for r r  The above correlation is equivalent to the current-current 
correlation in the continuum free-fermion modelJ ~8~ In the thermodynamic 
limit L T 0% the correlation (3.2) reduces to 

-2r~2 ( - -1 )" r_ - -  (3.3) 

for r r In this case, the scaling law (2.16) holds exactly for all the range 
of r except for r = 0. This is not suprising, because in the continuum limit 
the corresponding free-fermion model is conformally invariant, and the 
operator S} becomes a current operator. However, the factor ( - 1 )  r is 
never derived from conformal field theories, because the oscillation is 
intrinsically a lattice effect. 

Next we consider the correlation function (S):S)"+,.)~,v in the x direc- 
tion, which has the string form in the fermion representation. Lieb et al. (59) 
showed that the correlation is equal to an r x r Toeplitz determinant. Using 
the property of the Toeplitz determinant, Wu 16~J and McCoy (62) showed 
that one can obtain the asymptotic form of the correlation function. 
Following Wu and McCoy, we calculate the asymptotic form of the 
correlation in the thermodynamic limit L Tov as 

( S~ S~+r) XV- A(-1}' r-~_ ' ' ~ - x e x p [ - ( - 1 ) " x w ( r ) ]  (3.4) 
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Table l. The Ratio C ~ ' J I r ) / < S T S ] + , )  xv 
in the Spin-l /2 X Y  Chain, Using the 
Simplest C(L1)(r) of (3.6) and of the 
Exact Numerical Values of (Sj'Si+~), ~ xv 

Obtained by Kaplan e t a / .  ~1~ 

L r/L = 1/6 r/L = 1/3 r/L = 1/2 

6 0.903 115 1.029 329 0.957 899 
54 0.998 186 1.000 422 0.999 437 

102 0.999 488 1.000 118 0.999 842 
150 0.999 763 1.000 055 0.999 927 
198 0.999 864 1.000 032 0.999 958 

with 

1 1 1 1 17 1 
w(r )=  ~ x ~ + ~  x ~-~- -~  x T +  . . .  (3.5) 

for large r, where A is a constant. But the correlation of a f inite system 
cannot be expressed in a compact manner. Kaplan et al. ~~ calculated 
< ~,.x" ~,x \ X Y  oj w+, . /L  numerically up to L = 1000 with the help of the symmetry of 
the Toeplitz determinant. 

Following our scheme in Section2, we introduce the simplest 
approximate correlation function for finite L 

F n ] 1/2 
C ~ ( r )  :=A(  - 1)" / 

L L sin(nr/L)/ 
(3.6) 

which is obtained by replacing r in the correlation function (3.4) by 
(L/n)  sin(nr/L),  and dropping the higher orders. 

Table I shows the ratios C t ~ ( r ) / < S " S  " \ x r  Our approximate L I j j + r / L  " 

correlation function C~ ~(r) in (3.6) deviates slightly from the exact numeri- 
cal values o f / -~"  ~" \ x~, obtained by Kaplan et al ~1~ N O j  ~ j + r /  L 

As a more accurate approximate correlation function for finite L, we 
take 

[ n i]"2 CL(r) := A( -- I)"•  L sin-(-~r/L 

• 2 1 5  1+---~-_ ) (3.7) 
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Table II. The Ratio C , ( r ) / ( S T S ~ + , )  t in 
the Spin-l/2 X Y  Chain, Using the 
Improved Ct( r )  of (3.7) and the Exact 
Numerical  Values of (SiX Sj+r XYco 

Obtained by Kaplan et al. (~~ 

L r / L  = 1/6 r / L  = 1/3 r / L  = 1/2 

6 1.438 145 0.994 073 1.000 596 

54 0.999 997 1.000 002 1.000 000 

102 1.000 000 1.000 000 1.000 000 

150 1.000 000 1.000 000 1.000 000 

198 1.000 000 1.000 000 1.000 000 

where (f,(r, L) is the sum of the first three terms in the expansion (3.5) in 
which r is replaced by (L/n) sin(nr/L). We also have set X l l l = 0  in (2.8), 
and have taken the corrections into account up to the next order 1/L'-, 
approximating X ~2~ in (2.8) by a constant A ~21. We determined the con- 
stant ~2~ by a least-squares fitting of CL(r) in (3.7) to the exact numerical 

v x" XY " values of (S.S-.+,.),  with 54~<L~< 198 by Kaplan etal. As a result, we 
obtained A ~(-4) ~-J0.414. Table II shows the results of this fitting. Although 
there is only one fitting parameter, the agreement is excellent except for 
small i" = l, 2 of small system size L = 6. The reason for the large deviation 
for r = 1 and L = 6 is probably that the expansion (3.5) for w(r) gives a bad 
approximation for small r. 

3.2. Spin-l/2 X X Z  Antiferromagnetic Chain 

The Hamiltonian of the spin-l/2 XXZ chain is given by (3.1) with a 
nonvanishing anisotropy ,4 and S = 1/2. In this section, for the transverse 

x x X, X X Z  correlation (S~S~+r,,z. , we will examine the consistency between the 
scaling relation (2.16) and known analytical and numerical results. 

To begin with, we shall briefly summarize known results. 
From an analysis based on the continuum model, Luther and 

Pesche11331 predicted that the correlation behaves as 

(r162 \ xx z  A ( - I '  1 1 
ojoj+~/ /_  ~ ) ~ + B ~ r _  (3.8) 

with the critical exponent 

I 1 
= + - s i n  -I  A (3.9) ~(`4) ~ 7r 
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Table III. Comparison of o ( A ) / 2  in the Kaplan 
e t  al .  (1~ Scaling Function with the Numeri -  
cal (34'3s) and Analyt ical  (33) Results of the 
Critical Exponent r l ( / l j  of the Correlat ion 
( S x S  x ~ x x z  in the S p i n - l / 2  X X Z  Heisenberg j j + r / o o  

C h a i n "  

tl(A) 

zl a(A)/2 NumericaP 34'3s~ Analytical 133~ 

0.25 0.564 0.55( I ) 0.580 
0.50 0.645 0.64( 1 ) 0.667 
0.75 0.747 0.746(5) 0.770 

" Numbers in parentheses indicate the uncertainties in 
the last digit. 

for - I  < d ~ < l ,  where A and B are constants. Takada and Kubo c34'35~ 
examined the result (3.9) by employing the quantum transfer matrix 
method based on the path integral idea. Their numerical results are con- 
sistent with (3.9). (See Table III.) 

On the other hand, Kaplan e t  al. r ~o~ calculated the scaling functions of 
the correlation < S): ~" "5 x x z  ~j+,-/L by using the exact numerical diagonalization 
up to the system size L = 14. Their numerical result for the scaling of the 
correlation functions is represented in the form 

with 

, ~ x . ~ x  "5 X X Z  F x x X Y  (w ~J+,"~ (SjSj+,.)~ ] ~  
x x I '.v 'x X Y  < z= j 

~(A) -~ 1 + 0.445 x A + 0.239 x A[ 2 + 0.061 x A 3 

(3.10) 

S "  S "  ,~ x r  4 S.y S x  3 x r  for A e [ 0 , 4 ] ,  where ( j j + , .  and are the correlation \ - - J  ~ j +  r ~  co 

functions of the spin-l/2 X Y  chain with finite L and L = oo, respectively. 
Now we wish to find the relation between the critical exponent r/(A) 

of (3.9) and the exponent ct(A) of (3.11). Since the scaling relation (3.10) 
was determined for large distances r of correlations, we may neglect the 
second term in (3.8). Then one may regard that the scaling relation (3.10) 
which Kaplan e t  al. found by numerical experiment is a special case of the 
scaling relation (2.16). In fact, from the scaling relation (2.16) and the 
critical exponent ~1 = 1/2 of the X Y  chain in (3.4), we have 

,q,.x- . ~ x  "5 X X Z  F x x X Y  s;+,.> ]'-"'"' 
<s;"s;;+,.> L x "5 q ~o \ j j + r /  ,-f... a 

(3.12) 

(3.11) 
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Fig. 1. The exponent It(A) of the correlation (S)~S)"+r) xxz in the spin-I/2 X X Z  Heisenberg 
chain. The dashed line and the solid line are, respectively, ~(zl)/2 of (3.1 1), from Kaplan 
et ak, I ~o~ and ii(A ) of (3.9), from Luther and Peschel. c33~ The solid circles are the numerical 
results by Takada and Kubo. ~34"3sJ 

where r/(A) is the critical exponent  of  the X X Z  chain. Compar ing  this with 
the numerical result (3.10), one finds that  the critical exponent  r/(A) o f  the 

S "  S "  ~ x x z  correlations ( j j+ r ,  o~ of  the X X Z  chain must  satisfy 

r/(A) = �89 (3.13) 

Let us examine the relation (3.13). Tha t  is, we compare  0c(A)/2 with 
the predicted values (3.9) by Luther  and Peschel and the numerical  values 
by Takada  and Kubo.  As in Table I I I  and Fig. 1, the values 0c(A)/2 are 
consistent with these values of  the critical exponent  r/(A). 

Thus the scaling relation (2.16) with this previously obtained critical 
exponent  r/(A) is consistent with the scaling relation (3.10) obtained 
numerically by Kaplan  e t  al. 1~_ 

3.3. Spin- l /2  Isotropic Heisenberg Anti ferromagnetic Chain 

In this section, we treat the spin-spin correlation o f  the spin-I /2  
isotropic Heisenberg antiferromagnetic chain. The Hamil tonian  is given by 

~2 From Fig. 1, it may seem that the two numerical results are systematically smaller than the 
predicted value (3.9) by Luther and Peschel. But the deviations are within an allowable 
order of their numerical uncertainties. 
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(3.1) with anisotropy A = I  and spin S=1/2 .  It is believed that the 
spin-spin correlation function behaves as 

(S}S~+ 3 x x x ~ A  t 1) 1 [ (~0)1 ~ 1 " " - - x l o g  ( 3 . 1 4 )  
r -  ~ - - ,  r 4 ~ 2 r  2 

for a large distance r, where A, ro, and a are constants. The logarithmic 
correction in the first term is due to a marginally irrelevant operator in the 
Hamiltonian.t,9-22) The existence of such a logarithmic correction was first 
confirmed numerically by Kubo et al. 112) The second term in (3.14) can be 
determined by using the renormalization group analysis. (~8) The validity of 
the second term in (3.14) was confirmed numerically by Sandvik and 
Scalapino. tl~ As for the value of the exponent tr, however, there is a dis- 
crepancy as mentioned in Section 1.3.3. 

The aims of this section are the following. We first determine the criti- 
cal exponent tr in (3.14) by using the scheme of Section 2. Then we examine 
the efficiency of our finite-size scaling function (3.28) below. Such informa- 
tion may be useful when one extrapolates correlations for finite volumes to 
infinite volume. Finally, we clarify the cause of the discrepancy between the 
previous calculations for the critical exponent tr of the correlation (3.14). 

Our results, in particular, tr = 0.47 in Section 3.3.2 below, strongly 
support the field-theoretic prediction t r= 1/2 based on the mappings to 
the Wess-Zumino-Witten nonlinear tr-model (18"19~ or the sine-Gordon 
model~20-22) 

To begin with, we prepare some notations. Having the asymptotic 
form of the correlation (3.14) in mind, we write the correlation for finite 
length L as 

(.~.x- .~x \ XXX _ ~ :  ~/+, /z .  - ( - -  1)" G ~ ) ( r )  + G(~)(r) ( 3 . 1 5 )  

where G~ ~ and G~ I satisfy 

and 

[ - x  log (3.16) 
L ] ' o z  r 

1 
lim G ~ J ( r ) ~ - - -  (3.17) 

L T o~ 4rc2r 2 

Following the scheme in Section 2, we approximate the correlation for 
finite length L as 

G~)(r) ~ C~)(r) (3.18) 
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and 

G~(r)  ~- C~l(r) (3.19) 

where the approximate functions are given by 

A~z x { l o g [  L (3.20) 

and 

C~'(r) := - sin(rot/L) 

The former C~ ~ is given by (2.24) with (2.9). Here we note that (3.21) can 
be rewritten as 

1 ~. 1 
C ~ l ( r ) -  4~ 2 ] r + n L I  2 (3.22) 

because of the well-known formula 

1 ~ 1 (3.23) 
sin-" z - ,, =_  ~ ~ (z + nn) 2 

for z ~ C. The right-hand side of (3.22) is nothing but the form obtained by 
Sandvik and ScalapinoJ tll They obtained (3.22) by assuming a certain 
relation between correlations for finite volumes and that for infinite 
volume. (See ref. 11 for details). 

0.25 

0.2 

0.15 

Fig. 2. 

0 

Plot of ..... xxx ( S~ S}+,) L multiplied by 

. . . .  i i 

i i I , I i i i 1 

10 20 
r 

- - l ) ' r  for L=40. 
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Fig. 3. 
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Plot of .~ .,- xxx {S~S}+r>L multiplied by (--l)rr  for L=80. 

3.3.1.  Ex t rac t ing  the  M o s t  D o m i n a n t  T e r m  f r o m  the  
Cor re la t ion .  In  this section, following Sandvik and Scalapino, (~) we 
check the validity of  (3.19) and subtract  the second term G~ ~ from 
< S):S):+r> f xx of  (3.15). 

/~.,-~.,- \ x xx  for finite L by We calculated the correlat ion function \ ~ j  ~ j+~ , ' t  
performing a Monte  Carlo simulation at zero temperature (see Appendices 
A and B for details) which was proposed  by K u b o  et alJ'2~ to treat directly 

0.25 

0.2 

0.15 

0 

Fig. 4. 
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r 

Plot of r xDt(r ) for L=40. 
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Fig. 5. Plot of r x DL(r) for L = 80. 

a quantum system at zero temperature. Figures 2 and 3 show the Monte 
/ ~.,. ~.,. ,, x x x  multiplied by ( - 1 )r r for Carlo results for the correlation ,,oj ~  

L = 40 and L = 80, respectively. Clearly the even-odd oscillations in Figs. 2 
and 3 should be due to the second term G~ I in (3.15). 

Following Sandvik and Scalapino, tlt~ we subtract the oscillatory part 
G~ ) from .,- .,- x x x  ( Sj  S }+ , )  L as 

DL(r) := ( -- 1)" x { (Sj:" Sj:+,) x x x _  C~'(r)} (3.24) 

where we used the assumption (3.19). As shown in Figs. 4 and 5, the 
even-odd oscillations almost disappear by this subtraction. From this 
observation, we conclude 

DL(r) ~-- G ~ ( r )  (3.25) 

Consequently we have been able to extract the desired term G ~ ( r )  
related to the logarithmic correction from the original spin-spin correlation 
( S)"S)?+,.) x x x  of the spin-l/2 isotropic Heisenberg antiferromagnetic chain. 

3.3.2. Logarithmic Correction to the Correlation 
_r162 \ x x x  Now we shall determine the parameters A, r0, and a by v j  V j + r / L  " 

fitting C~ ) of (3.20) directly to numerical results of  D L, (3.24). As numeri- 
cal data, we used the results of the numerical exact diagonalization for 
L ~< 24 from ref. 63 and for L = 28 and 30 from ref. 64. Further, for larger 
lengths 32 ~<L<~80, we performed the zero-temperature Monte Carlo 
simulations as mentioned in the preceding section. ~3 

~3 Throughout Section 3.3, we use these data. 
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By using a least-squares fitting, we obtained A = 0.071, r0 - 0.039, and 
o--0 .47 with the accuracy 

DL(r)_--C~)(r) 
DL(r ) "< 1.21 x 10 -2 (3.26) 

for 1 ~< r~< L/2 and 4 ~<L~< 80. This accuracy (3.26) is comparable to the 
accuracy 1% for relatively large distance r in the Monte Carlo simulations. 

The result for the critical exponent a = 0.47 strongly supports the field- 
theoretic prediction a = 1/2 based on the mappings to the Wess -Zumino-  
Witten nonlinear a-model I~s'~9~ or the sine-Gordon model. ('-~ 

With the critical exponent a fixed to the field-theoretic value a = 1/2, 
we also determined the parameters A and r 0. As a result, we obtained 
A --- 0.065 and ro --- 0.028 with the accuracy 

D L ( r ) - - C ~ ' ( r )  
< 1.26 x 10-2 (3.27) 

DL(r) 

for 1 <~r<<,L/2 and 4~<L~<80. 
These numerical results strongly support  our conjecture (3.18) with 

(3.20), and the field-theoretic prediction a =  1/2 of the critical exponent. 

3.3.3. Efficiency of a New Finite-Size Scaling Function. 
So far we have treated the critical exponents r /and cr and the critical ampli- 
tude A. Unfortunately, by the method in Sections 3.3.1 and 3.3.2, one cannot 
get a value for an infinite-volume correlatin function itself for a given dis- 
tance r. For  this purpose, one must extrapolate correlation functions for 
finite volumes to infinite volume. In such a situation, information about  
finite-size scaling may be useful. But, as Sandvik and Scalapino c'~) pointed 
out, it is not clear whether the standard scaling hypothesis ( 1.1 ) holds or not 
when there exists a logarithmic correction to a correlation as in the correla- 
tion (3.14) of the present spin-l/2 isotropic Heisenberg antiferromagnetic 
chain. Actually, as mentioned in Section 1.3.3., there is a discrepancy among 
the previous calculations of the exponent a of the correlation (3.14). 

For this problem, we propose a new finite-size scaling function 

Q(r, L) := (3.28) 

with r = r/L, whose form is derived from (2.22) and (2.9). Here ~/c~(L) is an 
effective exponent to be determined. The aim of this section is to examine 

822/83/3-4-26 
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Fig. 6. The effective critical exponent q ~ ( L )  of the spin-spin correlation of tile spin-l/2 
is�9 Heisenberg ant�9 chain. (We use tile value of~/2 in the discussion at the 
end of Section 3.3.3.) 

the efficiency of our scaling function (3.28) and to clarify the cause of the 
discrepancy in the previous calculations of the exponent a of(3.14). 

First, to examine the efficiency of the scaling function Q(r, L) of 
(3.28), let us extrapolate G~ ), (3.16), for finite lengths to G(~):= 
limLT~ G~ ) by relying on the scaling relation 

G~l)(r) ~ G~)(r) x Q(r, L) (3.29) 

For this purpose, we must determine the effective critical exponent (36) 
qen(L) in Q(r, L), (3.28), as a function of the length L of the chain. Under 
the assumption of a conformal invariance, we calculated r/edL) numerically 
from the spectrum of the diagonal-to-diagonal transfer matrix of the six- 
vertex model, ~4 which is the two-dimensional classical system correspond- 
ing to the present spin-l/2 is�9 Heisenberg ant�9 chain. 
(See Appendices D-F  for details). The results for qedL) are shown in Fig. 6. 

( 1 )  . Combining the scaling relation (3.29) with the result DL(r ) ~--G L (i), 
(3.25), we expect 

DL(r) 
= D ~ ( r ) + D ( 1 ) ( r ) •  -.. (3.30) 

J4 Kliimper et al. (6sj studied the spectrum of the transfer matrix of the six-vertex model by 
using the Bethe ansatz. As a consequence, they observed a tower structure which is expected 
from conformal field theories. See also refs. 66-68 and 54 for the tower structure in the 
energy spectrum of the Heisenberg chain. 
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Fig. 7. Plot of DL/Q with the Kaplan-Horsch-Borysowicz scaling function Q of (3.10) for 
the distance r =  24. 

wi th  smal l  c o r r e c t i o n  t e rms  Da)(r) ( l =  1, 2,...) to the  e x t r a p o l a t i o n  va lue  

D~(r) : =  l im DL(r) (3.31) 
L y o o  

Fig. 8. 
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Plot of DL/Q with the simple function Q of (2.16) with q = 1, but without logarithmic 
correction, for the distance r =  24. 
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Plot of DL/Q with our scaling function Q, (3.28), for the distance r= 24. 

for a fixed r, where we have used the assumption that there appear only 
even powers of L -]  in the series, t45'46"]~ For  the fixed distance r = 2 4 ,  
Figs. 7-9 show DL/Q with three different scaling functions Q, i.e., the 
Kaplan-Horsch-Borysowicz scaling function, the simple form (2.16) with 
17 = 1, but without logarithmic correction, and our scaling function (3.28), 
respectively. Here the Kaplan-Horsch-Borysowicz scaling function is given 
by the right-hand side of (3.10) with (3.11) and A = 1. 

Clearly, DL/Q with our scaling function (3.28) gives the smallest 
correction to the extrapolation values D~.. Further, with the help of 
the above three scaling functions, we extrapolate DL tO the limit L T ~-  
Figures 10-12 show the results D~. so obtained. Clearly, the result with our 
scaling function (3.28) gives the smallest errors for the whole range of the 
distance r. The other two results give larger errors for relatively large r. 
These errors make a calculation of the exponent o- in the correlation 
(S)'-S):+r) xxxo~ of (3.14) hard. In passing, if we make the extrapolation 
without scaling, then the results have enormous errors, as in Fig. 13. 

We thus conclude that the scaling relation (3.29) with the scaling func- 
tion (3.28) is quite efficient when there is a logarithmic correction to 
correlations. 

Next we shall check that the above results for D~ obtained with the 
help of our scaling function (3.28) are consistent with the results obtained 
in Section 3.3.2. 
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Fig. 10. The extrapolated result rxD~., with the use of the Kaplan-Horsch-Borysowicz 
scaling function Q. The point for r =  36 is not included in the figure because it is off scale. 

W e  n o t e  that ,  f r o m  (3.25) and  (3.16), we  h a v e  

[ (';o)] D~(r)~ A log  
F 

(3.32) 

Fig. 11. 
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The extrapolated result r x D~. with the use of the simple function Q with r/= 1, but 
without logarithmic correction. 
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Fig. 12. The extrapolated result r x D~ with the use of our scaling function. The solid line 
is A[log(r/ro) ] 1/2, whose parameters A and r o are determined from a least-squares fitting. 

A s s u m i n g  the f ie ld- theoret ic  va lue  a = 1/2, ~5 we d e t e r m i n e  the c o n s t a n t s  A 
a n d  r 0 by  a leas t - squares  f i t t ing to the  resul ts  D ~  o b t a i n e d  wi th  the  he lp  
of  o u r  scal ing func t ion  (3.28). As a consequence ,  we have  o b t a i n e d  
A ~ 0.067 a n d  ro ~ 0 . 0 3 6 .  Clear ly ,  these va lues  are  cons i s t en t  wi th  those  
in Sec t ion3.3 .2 .  F u r t h e r ,  as s h o w n  in  Fig.  12, the  f i t t ing func t i on  
A [ l o g ( r / r o ) ]  ~/2 is in  g o o d  a g r e e m e n t  wi th  the ex t r apo l a t ed  va lues  r x D ~  in  
spite of  u s ing  o n l y  two f i t t ing p a r a m e t e r s  A a n d  r0 .~6 

These  o b s e r v a t i o n s  s t rong ly  s u p p o r t  the  f ie ld- theoret ic  p red i c t i on  
a =  1/2 based  o n  the m a p p i n g s  to the W e s s - Z u m i n o - W i t t e n  n o n l i n e a r  
a-modePlS'~91 or  the s i n e - G o r d o n  model .  (2~ 

Let  us discuss  the  r e l a t ion  b e t ween  o u r  sca l ing  func t i on  (3.28) a n d  the  
K a p l a n - H o r s c h - B o r y s o w i c z  scal ing r e l a t ion  (3.10). T o  c o m p a r e  these two  
scal ing funct ions ,  we rewri te  the  K a p l a n - H o r s c h - B o r y s o w i c z  sca l ing  

Js If we treat a also as a fitting parameter, we obtain a ~ 0.5, which strongly supports the field- 
theoretic value 1/2. 

16 The curve A[log(r/ro)] ~/2 is systematically larger than the extrapolated values for relatively 
larger r. This is because the numerical data for small r have smaller errors than those 
for large r, since we have more data for small r than for large r, i.e., we have data for all 
distances r ~< 1,/2 for a size L. Thus the fitting curve, which is determined by a least-squares 
fitting with large weight for small distances r and with small weight for large r, often turns 
out to have large deviations for large r. 
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Fig. 13. The extrapolated result r xD:o without scaling. 

function QKHa as follows. The right-hand side of (3.10) with (3.11) and 
A = 1 can be rewritten as 

r nr ]~/2 
QKna(r) -- / sin(nr)J (3.33) 

with a/2 - 1.75/2 = 0.875 and r := r/L, where we have used the scaling rela- 
tion (2.16) for the correlation function of the XY chain and the critical 
exponent 1~ = 1/2 of the correlation (3.4) o f the XY chain. Comparing (3.33 ) 
with (3.28), we conjecture that Kaplan et al. obtained the value ~/2 ~ 0.875 
as a smeared value of the effective critical exponent r/c~(L) for some 
lengths L. Let us check this conjecture. Actually, from Fig. 6, for the 
lengths 8 ~< L ~< 18 treated by Kaplan et al./l~ the effective critical exponent 
rlr takes the values 0.86-0.89. 

In conclusion, the result by Kaplan et al. can be explained in terms of 
our scaling function (3.28). Further, our scaling function also explains the 
fact that the optimal value of the parameter ~ in the Kaplan-Horsch-  
Borysowicz scaling (3.33) increases slightly with the increase of the system 
size L as we observed previously/16.,7~ Clearly, in a calculation of the expo- 
nent a of the correlation (3.14), one cannot ignore errors which come from 
the deviation of the value of the parameter 0~. But many of the previous 
numerical calculations 1'2-~5) of a have relied on the Kaplan-Horsch-  
Borysowicz scaling function (3.33) with ~ =  1.75. We conclude that the 
discrepancy in the previous calculations is due to ignoring the finite-size 
corrections of the effective critical exponent ~lcdL) in the scaling function 
(3.28). 
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4. APPLICATION TO THE SPIN-3/2 ISOTROPIC HEISENBERG 
ANTIFERROMAGNETIC CHAIN 

The Hamiltonian is given by (3.1) with S = 3/2 and A = 1. The spin-spin 
correlation has been studied intensively in r e c e n t  years, t69-71"38~1"23"42" 14.24) 
concerning the Haldane conjecture, t37) logarithmic corrections, and cross- 
over phenomena. 

Before applying our method to the spin-3/2 isotropic Heisenberg 
chain, we shall briefly summarize previous work, which will be related to 
our calculations. 

Haldane t37) treated the spin-S antiferromagnetic chains by using a 
semiclassical large-S approximation, and conjectured that the low-energy 
theories of the spin chains are described by the 0(3) nonlinear tr model 
with the topological term 0 = n or 0 for half-odd integer and integer spin, 
respectively. This result implies that all half-odd-integer-spin chains behave 
like the spin-l/2 chain. The same conclusion was reached by Schulz, 1381 
who used the Jordan-Wigner transformation and an Abelian bosonization. 
Affleck tT~ identified the spin-S Heisenberg antiferromagnetic chain with the 
Wess-Zumino-Witten nonlinear a model (WZW model) with topological 
coupling k = 2 S  by using a non-Abelian bosonizationJ 721 The corre- 
sponding critical exponent r/of the WZW model is given b f  TM 

3 
r / = 2 +  k (4.1) 

for topological coupling k. For example, one has q =  1 for the S =  1/2 
chain, and q = 3/5 for S =  3/2. Moreo ~39) diagonalized the Hamiltonian of 
the spin-3/2 isotropic Heisenberg chain numerically up to length L = 12 of 
the chain, and calculated the critical exponent r/ of the spin-spin correla- 
tion function by relying on the standard finite-size scaling tg) under the 
assumption that the correlation decays by a power law as ~71) 

,A B 
(4.2) 

where A and B are constants. As a result, she obtained r /=0.53_ 0.03, 
which is consistent with r/='0.6 predicted by Affleck in 1986 c71) rather than 
the ~I = 1 expected by Haldane ~sT~ and Schulz. 138) 

However, if there exists a marginally irrelevant perturbation in the 
Hamiltonian of the spin-3/2 chain, then the operator leads to logarithmic 
corrections to the decay of the correlation, as in the spin-l/2 isotropic 
Heisenberg antiferromagnetic chain. (See Appendix C.2 for details.) Affleck 
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et aL ~191 argued by using a conformal field theory that the leading term of 
the logarithmic correction is universal as 

lrA[ (r)]1,2 
( S ~ S ~ + , . ) ~ ~ ( - )  ~ x  log ~o +~r- (4.3) 

where ro is a nonuniversal constant. 
Affleck and Haldane ~'-3~ reexamined the relation between quantum 

spin chains and conformal field theories, and predicted, among other 
things, that the half-odd-integer-spin ( S >  1/2) Heisenberg chains exhibit a 
crossover from the WZW model with topological coupling k = 2S ( =  odd) 
to the WZW model with k = 1 (r/= 1) due to relevant perturbations in the 
Hamiltonian. In particular, in the case of the spin 3/2, there appear one 
relevant and one marginally irrelevant perturbations in the Hamiltonian, 
which are the causes of the crossover and logarithmic corrections, respec- 
tively. The numerical results by Ziman and Schulz 14~ strongly support the 
Affleck-Haldane conjecture. They calculated the ground-state energy Eo(L) 
and the excitation energies AE,,(L)=E,,(L)--Eo(L) for lengths L = 8 ,  10, 
12 of the spin-3/2 antiferromagnetic chain, and determined the central 
charge c and the critical exponent Jl by using a finite-size correction 
method based on a conformal field theory. 

In the following, we will perform three types of fittings by assuming 
three types of asymptotic forms of the correlation, i.e., a typical power 
decay (4.2), a power decay with a logarithmic correction (4.3), and a power 
decay with a logarithmic correction and with a crossover as was predicted 
by Affleck and Haldane. 

Although we cannot give a conclusive result, our results strongly sup- 
port the Affleck-Haldane predicion. In fact, from the point of view of the 
Affleck-Haldane argument, we can give consistent interpretations of the 
numerical results of the correlation by Moreo ~39~ and Lin. (64~ 

4.1. Fitting (i) 

First we assume as a trial that the spin-spin correlation decays by a 
power law as.in (4.2). Following our scheme in Section 2, from (2.5), (2.6), 
and (2.9), we take 

CL(r ) :=A(-1)r[ Lsin(nr/L)]'l+ B[ Lsin(r~r/L)] "- (4.4) 

as an approximate correlation function for <S:~S,+r> L. We determine the 
constants A, B, and q by a least-squares fitting of CL(r) to the exact 
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squares fitting to exact numerical values <S~Sf+r> L. 

numerical values of <S~S~+r> L for the distance 3 ~< r~< L/2 in finite chains 
of length L = 6 - 1 2  obtained by Moreo r and of L =  14 by Lin) 64) As a 
consequence, we obtained A =0.92, B = -0 .06,  and the exponent r /= 0.51. 
Figure 14 shows the ratio CL(r)/<S~S~+,.>L versus the effective distance 
rL := (L/~z) sin(;zr/L). 

Our result r /= 0.51 for the exponent is in agreement with the result 
q = 0.53 + 0.03 obtained by MoreoJ 39~ This value is also in agreement with 
r /=0.6 predicted by Affleck in 1986(71) rather than r / = l  expected by 
Haldane c37) and Schulz) 38~ As in Fig. 14, the fitting results are accurate to 
the exact values within 4 %. But the results for the ratio CL(r)/< S~S~+ r> L 
curve upward with the increase of the effective distance rL. 

4.2. Fitting (ii) 

Next we assume the asymptotic behavior (4.3) of the correlation. 
Following the same procedure as for the spin-l/2 isotropic Heisenberg 
antiferromagnetic chain in Section 3.3, we put 

C~g(r) := A(- l )r [ L sin(nr/L)]" x {log [ L Sinr~nr/L)] } ~/2 

- 7[ 2 

+ B [  Lsin-(zcr/L)l (4.5) 
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to trial, and determine the fitting parameters A, B, r/, and r o in the same 
way as in Section4.1. As a result, we obtained A=0.77 ,  B = - 0 . 0 5 ,  
I1 = 0.73, and ro = 0.29. Figure 15 shows the ratio C~g(r)/< S~S,+,.> L versus 
the effective distance rL = (L/n) sin(nr/L). The fitting resuls are accurate to 
the exact values within 4 %. The outstanding feature is the following. The 
fitting error is within order 10 -4 for the distance r~>3 of the correlation. 
However, we obtained a somewhat strange value q=0.73 ,  which lies 
between i? =0.6  of the k =  3 WZW model and r /= 1 of the 0(3)  nonlinear 
a model with topological term 0 = n. We cannot find a corresponding criti- 
cal theory with the exponent ~l = 0.73 from the point of view of conformal 
field theories, 1'8"23' which are believed to describe the low-energy behavior 
in antiferromagnetic quantum spin chains. 

4.3.  F i t t i n g  ( i i i )  

According to Aftleck and Haldane, ~'-3' there appear  one relevant and 
one marginally irrelevant perturbations, which are the causes of the cross- 
over and logarithmic corrections, respectively, in the spin-3/2 isotropic 
Heisenberg antiferromagnetic chain. In this section, we try to take account 
of the crossover effect predicted by Affieck and Haldane in our scheme. 

Affleck et aL (19) showed that the leading term in the logarithmic 
corrections for large distances is universal, i.e., is independent of the 
topological coupling k ( = o d d )  in the WZW models. This result suggests 
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that the existence of a relevant perturbation leading to the crossover does 
not affect the leading term of the logarithmic correction to the decay of the 
correction for large distances. We assume that the crossover occurs only for 
the exponent of the power-law decay of the correlation but not for the 
logarithmic corrections. 

Under this assumption, we calculate the asymptotic form of the corre- 
lation (S~S~+r)  ~ of the spin-3/2 isotropic Heisenberg chain, following 
Attleck and Haldane. t23~ As a result (see Appendix C.3 for details), we 
formally obtain 

($7S7+r)~, ~(-1)"r .~Tgx log x +---st_ (4.6) 

with the crossover function Y. Here the exponent r /= 3/5 came from (4.1) 
for the k = 3  WZW model, and the crossover function is expected to 
behave as 

'const for small l 
Y(I)~ [constx  1/l ~" for large/  

(4.7) 

with ~r/= 0.4. This describes a crossover from r /= 0.6 (k = 3 WZW model) 
to I /= I (k = 1 WZW model). 

Unfortunately, we cannot get an explicit form of the crossover func- 
tion Y. Therefore we must take a different approach from that in Sections 
4.1 and 4.2. We determine the crossover function Y from the exact numeri- 
cal results of the correlations obtained by Moreo 1391 and Lin] 641 That is, 
we determine Y by 

( S ,  S T + , . ) L = ( - 1 ) "  Lsin(nr/L)J x ( l ~  Y(IL) 

+ B [ L sin(m./L)] 2 (4.8) 

with the effective scale. 

Here, for the values of the parameters B and ro, we use B =  -0 .05  and 
ro = 0.29, which were obtained in Section 4.2. These values are expected to 
be good estimates for (4.6) because the resulting exponent r /= 0.73 in Sec- 
tion 4.2 can be interpreted as the effective exponent. Figure 16 shows Y(lt) 
multiplied by 16'r with fir/= 0.0-0.6. The results for the predicted fir/= 0.4 by " L  
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Fig. 16. Crossover function Y(IL) multiplied by l~ 'z with fir/=0.0-0.6 in the spin-3/2 
Heisenberg chain. 

Affleck and Haldane ~23~ increase slowly with the increase of the effective 
scale l L. If the crossover continues to larger distances than those we now 
observe, then the results in Fig. 16 do not contradict the Affleck-Haldane 
conjecture. 

Although we have not been able to give a conclusive result, we have 
proposed consistent interpretations of the numerical results of the correla- 
tion by Moreo (391 and Lin ~64~ from the point of view of the Affleck- 
Haldane argument. 

APPENDIX A. ZERO-TEMPERATURE MONTE CARLO 
METHOD 

In this appendix, we review a Monte Carlo method which deals 
directly with a quantum system at zero temperature. We applied the 
method to the spin-l/2 Heisenberg chain in order to calculate the spin-spin 
correlation function, whose data are used in Section 3.3. 

As is well known, techniques based on the path integral idea are effec- 
tive for analyzing quantum systems at finite temperatures. In particular, the 
quantum Monte Carlo method t-~5-27"74~ and the quantum transfer matrix 
method ~75"35"~7) have been widely used to study quantum many-body 
systems. However, to obtain information about a quantum system at zero 
temperature within the same formalism, one must extrapolate quantities at 
finite temperatures to those at zero temperature. The procedure sometimes 
yields enormous errors, which makes it difficult to arrive at conclusive 
results. 
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A Monte Carlo method which deals directly with a quantum system 
at zero temperature was first proposed by Kubo et  al. t~z) in order to study 
the logarithmic correction to the spin-spin correlation of the spin-l/2 
Heisenberg antiferromagnetic chain. The system satisfies the so-called 
Sutherland relation t76~ that the Hamiltonian commutes with the transfer 
matrix of the six-vertex model with certain Boltzmann weights. ~7 The 
application of the Perron-Frobenius theorem (see, e.g., refs. 77 and 78) to 
the Hamiltonian and the transfer matrix yields immediately the result that 
the eigenvector with the maximum eigenvalue of the transfer matrix can be 
identified with the ground state of the quantum system, so that a correla- 
tion function of the six-vertex model is identical to a certain correlation 
function of the ground state of the Heisenberg chain. 

Generalizing the idea proposed by Kubo et  al., we assume that the 
transfer matrix WN of a classical system and the Hamiltonian ggu of a 
system with N sites are defined on the same Hilbert space, and that the 
eigenvector ~ u  satisfies 

W N ~  N =  A ~rax(~) N (A.1) 

and 

JINq~N = E ~ b N  (A.2) 

with nondegenerate eigenvalues A~v ax and E ~  ~ which are the maximum 
eigenvalue of WN and the ground-state energy of Jr~ respectively. 

Under these assumptions, the correlation between two observables ~b; 
and ~b/defined as 

( ~i~bj) lV• M, P := Tr[~bi~bj(WN) M ] 
Yr(WN) M (A.3) 

for the classical system with the size N x M  is related to the quantum 
mechanical correlation for the ground state tb N by 

(~bgb/)N := (~N, ~b+~bj~N) = lim (Oiq}j )NxM. P (A.4) 

where the subscript P indicates the use of the periodic boundary condition 
in the transfer direction of the transfer matrix. Thus, by combining (A.3) 
with a Monte Carlo method, one can directly calculate the ground-state 
correlation of a quantum system without an extrapolation with respect to 
temperature. 

t7 More precisely, Sutherland showed that the Hamiltonian of the spin-I/2 XYZ Heisenberg 
chain commutes with the transfer matrix of the eight-vertex model with certain Boltzmann 
weights. Therefore the Kubo-Kaplan-Borysowicz method can be applied also to the X Y Z  
chain. 
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However, there often arises the problem that usual updating proce- 
dures consisting of local spin flips do not necessarily satisfy the condition 
of the ergodicity of the Monte Carlo sequences. To guarantee the 
ergodicity of the Monte Carlo simulations of the six-vertex model, Kubo 
e t  al. ~2~ introduced updating procedures of global flips. But the acceptance 
ratio of global flips decreases very rapidly with increase of the system size. 

In our earlier work 116'17) we avoided this difficulty by modifying the 
Kubo-Kaplan-Borysowicz method as follows. Instead of imposing periodic 
boundary conditions in the transfer direction of the transfer matrix, we 
used "free boundary" conditions. Thereby the ergodicity of the Monte 
Carlo sequences are guaranteed by using only local spin flips, without 
global flips. 1791 As is well known, the periodic boundary conditions in the 
six-vertex model lead to global constrains related to the conservation of 
winding number, c ~2~ In general, it is proved 179) that the use of "free bound- 
ary" conditions removes such constraints. Consequently, the modification 
is equivalent to choosing 

( ~e, (wN) Mp- r M/2 ~e) 
(4, i , l , j )  N>< M, ~ : =  (~e, ( w N )  ~" ~e) (A.5)  

instead of (A.3) as the approximate correlation function. Here M is even 
and the subscript F denotes the "free boundary" condition, which is deter- 
mined by the way we choose a trial vector ~. Clearly, there arises another 
problem, namely that one cannot measure the observable ~bi~bj near the free 
boundaries of the system. But this demerit can be outweighed by choosing 
the trial vector ~ carefully. We chose ~ so that the original six-vertex 
model feels the standard free boundary conditionsJ ~6"~7~ It turns out that 
this choice leads to a more rapid convergence than the periodic boundary 
condition imposed in (A.3). In consequence, the modification enables us to 
treat much longer chains of the spin-l/2 isotropic Heisenberg antiferro- 
magnetic model. (See Appendix B for details.) 

We can make the following two remarks. 

�9 This zero-temperature Monte Carlo method can be applied also to 
the Hubbard chain, which satisfies a similar Sutherland relation, ~8~ 
namely that the Hamiltonian commutes with the transfer matrix of 
the double-layer six-vertex model. 

�9 It is not clear whether the present method applies effectively to a 
general quantum system. We must first find a "simple" classical 
system which satisfies the above requirements, but even this might 
not be easy in general. 
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APPENDIX  B. Z E R O - T E M P E R A T U R E  M O N T E  CARLO 
S I M U L A T I O N  OF THE S P I N - l / 2  ISOTROPIC 
HEISENBERG A N T I F E R R O M A G N E T I C  CHAIN  

As mentioned in Appendix A, Kubo et al. ~1"-~ performed a Monte 
Carlo simulation for the six-vertex model by relying on the relation 
between the spin-l/2 Heisenberg chain and the six-vertex model. They 
calculated the spin-spin correlation at the isotropic antiferromagnetic 
point up to the length L = 40 of the chain. Later we reperformed a Monte 
Carlo simulation up to 18 L = 80, modifying the Kubo-Kaplan-Borysowicz 
method as in Appendix A. In this appendix, we will explain only crucial 
points for performing our modified Monte Carlo simulations. See ref. 12 for 
the details of the updating procedures in the simulations. 

B.1. Statist ical  Error in M o n t e  Carlo Simulat ions 

Since the system which we treat is at criticality, the dynamics of a 
Monte Carlo simulation may become very slow. Therefore, we must care- 
fully estimate the statistical error in the Monte Carlo simulations. 

As usual we define the average El  O] of the observable O with respect 
to the Monte Carlo sequence {o)i} ~~ as 

E[O] :=-7 y OIco,) (B.1) 
i = 1  

In the limit Y T oo, the average E[ O] converges to the exact value of the 
thermal average of O. But, for finite Monte Carlo steps v,g', El- O] deviates 
from the exact value. To estimate the deviation, we take the following 
strategy. We perform Monte Carlo simulations so that we have 2/# Monte 
Carlo sequences {col jl} ;.'El (J = 1, 2,..., 2/#) which are independent of each 
other and have common Monte Carlo steps X .  We determine the standard 
deviation a [ O ]  by 

- E ~ J I [ O ]  { E ' J ' [ o ] }  2 , (B.2) 

where EtJ~[ -.. ] denotes the average with respect to the j t h  Monte Carlo 
sequence {colJ~}~'~l . From this standard deviation a [ O ] ,  the statistical 

18 Our computations were done on Fujitsu S-4/2, SONY NWS-3460, and HP Apollo 
9000/720 and/730 workstations at Gakushuin University. 
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error  6[0] with respect to a Monte  Carlo sequence /o) ~ .~io, (~tot = -  4~d((') t i) i = l  
can be estimated by 

J V" )1/2 
os (B.3) 

In practical simulations for the spin-l /2 isotropic Heisenberg antiferro- 
magnetic chain, we took  J V ~  10 4 Monte  Carlo steps per spin, ,jCr~ 10 4, 
and ~ o t  ~ 10s Monte  Carlo steps per spin, after equilibration runs of  10 5 
Monte  Carlo steps per spin. 

B.2. Efficiency of the Modification 

In order  to examine the efficiency of  the modification for the K u b o -  
Kap lan-Borysowicz  method in Appendix A, we compare  the speed of  the 
convergence of  the correlat ion (S)-S)"+r)L• (A.5), with that o f  
(S)"S)~+r)L• (A.3), as M tends to oo. 

As demonstra t ion,  we calculate exactly (S)Sy+~)L• and 
(Sj"S)'.+,.) ~_ • M, V for L = 12 and r = 6 by multiplying numerically the trans- 
fer matrix of  the six-vertex model  by itself repeatedly. As shown in Fig. 17, 
we observe that  the correlat ion (S')YS)'+r)L• converges to the exact 
numerical result (S):S)~+~)z, of  ref. 63 much more  rapidly than 
(S)S)'+r)L• as M tends to oo. 

i i i i 

�9 PBC 
1.1 ~176 �9 FBC 

i 
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Fig. 17. For L = I 2  and ,'=6, (S~S)"+r)L• and <S)'S)"+r>L~M.p/ 
(S)S)'r L are plotted versus M/L, where we have used the exact numerical result of ref. 63 
as (S)S)"+r) L; FBC and PBC denote, respectively, free and periodic boundary conditions. 
Clearly, FBC exhibits more rapid convergence than PBC. 

8 2 2 / 8 3 / 3 - 4 - 2 7  
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Next, we study the effect of  free boundaries,  which might  affect the 
expectation value of  the correlations. For  this purpose,  we consider the 
correlation 

WL) S~ S~+,(WL) 7 t) (B.4) 
(s)s)+,)~• ( ~ , ( w j ~  ~ ) 

which measures the observable S)"S)~+,. at the depth l (1 ~< l ~< L) from one 
of  the free boundaries.  Here, for l=L, we have (S)"S')+,.)L• 
(S)"S)'+,.)L• F. Figure l8 shows (S)"S]+,.)L• for L = 4 0  and 
r =  1, 2, 10, 20, and Fig. 19 for L = 4 0  and r = 2 0 .  In particular, as shown 
in Fig. 19, for large depth l, the errors due to the free boundaries  are less 
than the statistical errors in the Monte  Carlo simulations. F r o m  this 
observation, we conclude that  

i< s ) s /+ , .>  ~• ~. ~ -  < s ) s ) + ~ >  ~ l < 61~s)s)+,.] (B.5) 

for a fixed r if M>~2L. Relying on (B.5), we identify (S):S~:+,.)L• as 
(S):S)+~)L. Then the deviation from the true (S)"S)"+~)L is evaluated by 
6E s; s)+ A. 

Fig. 18. 
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Fig. 19. Plot of (S]S]+r)L• V(/) against the depth/from the free boundary for L =40 
and r = 20. The errors are due to the statistical uncertainty in the Monte Carlo simulations. 

A P P E N D I X  C. R E N O R M A L I Z A T I O N  G R O U P  M E T H O D  

In this appendix, we briefly review the renormalization group method 
for a d-dimensional Euclidean scalar field theory (see, e.g., ref. 81 ). In parti- 
calur, the critical theory of antiferromagnetic quantum spin chains is 
believed to be described by two-dimensional massless field theories, among 
which the sine-Gordon theory for the spin-l/2 XXZ Heisenberg chain (see, 
e.g., ref. 82) is probably the most popular. 

C.1. R e n o r m a l i z a t i o n  Group  Equat ions  

This section is a review of the well-known results from renormalization 
group analysis, but it is necessary for the calculations in Sections C.2 and 
C.3. 

We denote the bare two-point function by 

G0(r, A, 2 ) =  (~b(r) q~(0)) (C.1) 

where A and 2 are a momentum cutoff and the bare coupling constant of 
the interaction in the Lagrangian, respectively. The corresponding renor- 
realized two-point function for the massless theory is given by 19 

GR(r, 1r g)= Z-J(K, A, 2) Go(r, A, 2) (C.2) 

19 of course, we assume the renormalizability of the theory. 
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where Z, K, and g are the field renormalization constant, the renormaliza- 
tion momentum, and the dimensionless renormalized coupling constant, 
respectively. Since the bare two-point function Go with a fixed 2 and a fixed 
A does not depend on the renormalization momentum K, i.e., 

K 0 0 = ~ ;.,A G~ A, 2) (c.3) 

we have the renormalization group equation 

(C.4) 

from (C.2), where 

p = ~  g (c.5) 

and 

7 = ~ K  log Z (C.6) 

In the limit A T or, a dimensional analysis shows that fl and 7 become func- 
tions of only a single variable g. 

To find a solution G R = GR(r, K, g) of (C.4), we introduce three-dimen- 
sional Cartesian coordinates (K, g, GR). Then Eq. (C.4) is equivalent to the 
condition that the vector (K, fl, --27GR) is orthogonal to the normal vector 

OGR, OGR 1) (C.7) 
OK Og ' 

of the surface GR = GR(r, K, g) with a fixed r. In other words, (K, fl, --27GR) 
is a tangent vector of the surface. 

Consider the characteristic curve (K, g, GR)= (K(3), g(s), GR(S)) with a 
parameter s, which is defined by the solution of the system of ordinary 
differential equations 

d 
- - K = K  (C.8) 
ds 
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d 
--~s g = fl( g ) (C.9) 

d 
dss GR = --2y(g) GR (C.10) 

That is, the derivative of the vector (x(s),g(s), GR(S)) is equal to the 
tangent vector (x, fl,--2yGR) of the surface. Then the solution GR(S)= 
GR(r, X(S), g(s)) to the ordinary differential equations satisfies the renor- 
malization group equation (C.4). 

The solution of (C.8) is given by 

x( s) = xoeS = xop (C.11) 

where Xo is the initial value of the renormalization momentum x, and we 
have introduced the new scale parameter p. Using the scale parameter p, 
we can rewrite Eq. (C.9) as 

ff---~ g(p ) = fl( g(p ) ) (C.12) P 

Further, from (C.10), we have 

] GR(r, xop, g(,o))=exp --2 y(g(p')) GR(r,~co,g(1)) (C.13) 
1 

From dimensional analysis, the left-hand side of (C.13) can be rewritten as 

GR( r, Kop, g(p ) ) = (tCop) d-2 x F( Kopr, g(p ) ) (C.14) 

with a function F of two dimensionless variables xopr and g(p). Using 
(C.14), we can rewrite Eq. (C.13) as 

GR(p ,  Ko,g ( l ) )=(xop )a -2 •  
p d '  

(c.15) 

where we have replaced r by rip. In particular, when the coupling constant 
g is given by a fixed point g* of the function fl, i.e., g = g* is given by 
fl(g*) = 0, we have 

GR(r/p, Ko, g*)=(Kop)a-2xp2rtg*)xFO%r,g *) (C. 16) 
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This implies that the critical exponent is given by r /=2y(g*) .  In the case 
with g #  g*, we assume that the function F with a fixed xor is almost 
constant for small p. Under this assumption, we have 

r fld ' 
GR(p,h'o,g(1))--constx(/cop)d--2xexp[2f.--~-,  y(g(p'))]  (C. 17) 

for a fixed r as p ~ 0 .  Thus we get q =2y(g*)  again. 
Similarly, for the Fourier transform GR(k,/Co, g(1)) of GR(r,/c o, g(l  )), 

we have 

~R(Ph" Ko'g(1))~const X (KoP)--2x exp [ 2 Ip dp' ] j~ p, y(g(p')) (C.18) 

for a fixed momentum k as p ~ 0. 

C.2. Logarithmic Correction to Correlations 

In this section we review the case where there is a marginally irrele- 
vant perturbation in a Lagrangian whose unperturbed Lagrangian 
corresponds to a fixed point in a parameter space of coupling constants. As 
is well known, a marginally irrelevant perturbation leads to a logarithmic 
correction to power-law decay of correlations, 18'~ as in the correlation 
(3.14) of the spin-l/2 Heisenberg chain. Although results in this section are 
well known, they are useful for the analysis of correlations of the spin-l/2 
Heisenberg chain in Section 3.3, and are necessary for the calculation in 
Section C.3. 

For a small coupling constant of a perturbation, we can expand for- 
mally the function fl as 

fl(g) = - (  d -  x) g + b2 g2 + ... (C.19) 

in powers of the renormalized couping g of the perturbation, where x is the 
scaling dimension of an operator of the perturbation. In particular, when 
x = d, we say that the operator is marginal. Then the approximation up to 
order g2 gives 

1 
g(p ) ~- (C.20) 

b2 log(p/po) 
with 

1 
g(1) (C.21) 

b,_ log Po 
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from (C.12). Here, if b_,g(1)> 0, then the operator is irrelevant. In fact, 
since we have po > 1 from (C.21), g(p) varies from g(1) to 0 when p varies 
from 1 to0.  Thus the effective coupling g goes to 0 as p J,0. In the 
following, we concentrate on the case that the operator of the perturbation 
is marginal and irrelevant. 

For  a small coupling g, we can write the function 7 in (C. 17) as 

7 ( g ) = 7 "  +dl  g + d z g ' - +  ... (C.22) 

in powers of g, where ),* = y(g*) for a fixed point g* = 0 corresponding to 
the unperturbed system. Substituting (C.20) into (C.22), we have 

dl 
7( g(P ) ) ~- Y* (C.23) 

b2 log(p/po) 

where we have dropped higher orders than g'- in (C.22). This combined 
with (C.17) gives 

GR(r/p, Xo, g( 1 )) ~ const x pa-  z +,t x Ilog(p/po)l ~ (C.24) 

with a = - 2 d  I/b2. This implies 

, [ (r)l  Gg(r, xo, g ( 1 ) ) , , ~ c o n s t •  log ~0 (c.25) 

for large distance r, where ro is a constant. 
Similarly, from (C.18), we have 

(~R(k, h'o, g( 1 )) ~ const x k -2  +,l x [log(ko/k)] ~ (C.26) 

for small momentum k, where k o is a constant. 
We remark the following. Clearly the higher order terms in the func- 

tions fl of (C.19) and ), of (C.22) give additive corrections. But these are 
suppressed by additional powers of 1/log(r/r0). ~19'22~ 

The results (C.23) can be interpreted as follows. The effective critical 
exponent is given by 

o" 
qedP ) ~- q + log(p/po) (C.27) 

for the scale p. In particular, we expect that, for a finite system of linear 
dimension L, the effective exponent is given by 

o" 
q~r(L) ~ q -- log( L/Lo ) (C.28) 
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where Lo is a nonuniversal constant. This result (C.28) should be well 
known, but has not been written down explicitly as far as we know. 

C.3. Crossover in Correlations Decaying by Power Law 

In order to treat the crossover phenomenon in the spin-3/2 isotropic 
Heisenberg antiferromagnetic chain in Section 4, in this section we review 
a critical theory with a marginally irrelevant perturbation and a relevant 
perturbation. 

For simplicity, we assume that the unperturbed system is described by 
a critical theory for a fixed point in the parameter space of coupling con- 
stants. Then the original critical theory of the unperturbed system changes 
into another critical theory owing to the relevant perturbation. Namely a 
crossover occurs in the system. 

In a similar way as in Appendix C.1, we can write down the renor- 
malization group equation as 

with 

and 

Og 2 2y) G R = 0 (C.29) 

d 
P -7- g, = f l , (g,)  (C.30) ap 

P ~pg2 = f12(g2) (C.31) 

with the scale parameter p = K/K o, where we have assumed that there is no 
mixing between two renormalized coupling constants g~ (irrelevant) and g2 
(relevant) in the functions fl~ and f12. In the same way as in Section C.1, 
we have 

GR , 
p d '  

Kog(1, 

x F(xo r, gl(P), gz(P)) (C.32) 

for the renormalized two-point function G R. We further assume that there 
is no mixing between two renormalized coupling constants g~ and g2 also 
in the function y. Namely, the function y can be written as 

?(gl ,  g2) = ?* + Yl(g~) + ?2(g2) (C.33) 
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where ),* is the value of ? at the fixed point corresponding to the unper- 
turbed system. Then we have 

r 1 ) ) , - , c o n s t x p  d - 2 + '  log P 

[ 2 ft, dp' ?2(g2(P')) ] x exp L 31 p' (C.34) 

in the same way as in Section C.2. 
Since the coupling constant g_,(p) approaches the fixed point g* :~ 0 as 

p ~ 0 from the assumption, we can approximate the function fl,_ as 

fl,_(g_,) -~ b,_l(g2 - g*)  (c.35) 

near the fixed point g*. Here we assume that the constant b_,~ is positive, 
i.e., the corresponding operator is not marginal. 2~ Using the approximation 
(C.35), we obtain the solution of (C.31) 

g_@/-g*  = \~ , /  [g2 (p , / -  g*-I (C.36) 

for small p and small P l (>P)-  Similarly, near the fixed point, we have 

p@, 
I, 7 )P2(g2(P')) 

~ const + - -  {)h(g*)+d,_~[g,_(p')-g*]} 
i P'  

= c o n s t + y a ( g * ) l o g  ~ +~-~k)-~/  [ g d P , - - g * ]  (C.37) 

for small p and small p~ ( > p ) ,  where we have used (C.36). Substituting 
this into (C.34), we get 

GR(l:/p,h-o,g~(1),g2(1))~constxpa-'-+~+~llog(p/po)l ~ (C.38) 

for small p, where ~r/= 2y2(g*). 

20 When the constant b21 is vanishing, the operator is marginal at the fixed point g2.* Tiffs 
contradicts the following. In the k = 1 Wess-Zumino-Witten model corresponding to the 
spin-3/2 isotropic Heisenberg antiferromagnetic chain, it is known that there appears only 
one marginal operator, tl9) which is already taken into account as the coupling g t. 
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We summarize the results in this section as follows. The two-point 
correlation function behaves as 

GR(r, Xo, g,( 1 ), g2( 1 )) ~ const x log x Y (C.39) 

where Y is a crossover function whose asymptotic forms are given by 

const for small l 
Y(1) ~ (const  • 1/I ~'~ for large I (C.40) 

Similarly, we have 

d R ( k ,  xo,  g l ( 1 ) , g 2 ( 1 ) ) ~ c o n s t x k - 2 + ' ~ [ l o g ( k o / k ) ] ~ x  Y ( k o / k )  (C.41) 

in momentum space for small momentum k, where ko is a positive con- 
stant. The results (C.39) and (C.41) should be well known, but have not 
been written explicitly as far as we know. 

Thus the critical exponent exhibits crossover from q to (q + &7)- 

APPENDIX D. CONFORMAL TOWERS IN ENERGY SPECTRA 

In this appendix, we briefly review Cardy's argument ~3~ for a two- 
dimensional conformally invariant system of an infinitely long strip with 
finite width L, in order to proceed to an analysis for a more complicated 
system such as the spin-l/2 Heisenberg chain. The argument in this 
appendix is useful in the succeeding Appendices E-G. 

We start from (2.13). By using the identity 

1 2 e  - n--/L 

sinh(z~z/L) 1 - e -  2,,:/L 
(D.1) 

for z e C, we can rewrite the two-point correlation (2.13) as 

f2zt \"  
) e-2:x,,,L • e-::,,',,," 

1 ,~ 2h 1 21; 
(D.2) 

with the scaling dimension x = (h +/7) and the "spin" s = (h- /~) ,  where we 
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have put w' - w = z = u + iv (u, v ~ R). For  a positive u, the right-hand side 
of (D.2) can be expanded as 

(~(w')  q~(w)) L = a,,,a,,, 
n I, l~l = 0 

[ -- 27~(-u "~- n~ "~- m ) u 2fi~i(s -I- n'/-- ~'n ) DI (D.3) 
x exp L L 

On the other hand, the correlation can be written as 

Tr[  ~(0) ( We)" ~(v)(WL) g - ' ' ]  
(~(W') ~(W))C = lim (D.4) 

Mr ~- Yr(WL) g 

in terms of a transfer matrix Wz and an operator ~. We assume that the 
matrix WL is positive, i.e., the Hamiltonian ~ defined by W c =  
e x p [ - i f  L] is Hermitian. We further assume that the maximum eigenvalue 
of Wc is nondegenerate. 

We note that 

Tr[~(0)  ( WL)" ~(V)( WL) M-' '] 
Tr(WL) M 

1 (qs"~, qs~"~) i~,,,, 
- E ,  e_E,M ~" q~(O) e -E ..... 

i.,, 

x (~r ~(0) qSIl~) e--E, Ig-,,I (D.5) 

where qs~,,I is the eigenvector of the Hamiltonian ..Yt L with energy eigenvalue 
E,, and with momentum k,, (17 =0 ,  1, 2,...). The collection of ~1"~ forms an 
orthonormal complete system. In the limit M T oz, we have 

(q~(w')q~(w)),= ~ I(qS'~215176215 .... (D.6) 
n # 0  

where E o indicates the ground-state energy. 
Comparing (D.6) with (D.3), Cardy 13~ obtained the relations 

2re 
E , , - E o = - - ~ ( x  + m + l h )  (D.7) 

and 

27~ 
k, ,=--~ (s + m- - t h )  (D.8) 



710 Koma and Mizukoshi 

In particular, from the former, the critical exponent is derived as  129) 

q = 2x = L z/E (D.9) 
7~ 

by measuring the energy gap AE. 21 The latter, (D.8), implies that the "spin" 
s must be equal to an integer because of the translation invariance of the 
system which respects periodic boundary conditions. 

APPENDIX E. LOGARITHMIC CORRECTIONS TO ENERGY 
GAP AND TO POWER-LAW DECAY OF 
CORRELATIONS 

When there are logarithmic corrections to a power-law decay of 
correlations, then there often appear logarithmic corrections also in the 
energy gap AE. ~s851 53,19,36.221 In fact, such logarithmic corrections are 
observed in many systems. ~51-53"22~ 

In this appendix, we will show the following. Under a certain scaling 
assumption for two-point correlations, the energy gap 3 E  has the 
form~58.19.22) 

AE~--s q--log[L/(2ro) ] 

for a system of an infinitely long strip with finite width L, provided the 
two-point correlation in infinite volume behaves as 

[ A log (E.2) <r 0) r 0)> ~, = <r 0) r r )>~ ~ r" 

for large distance r. Here t I, a are critical exponents and A, ro are real con- 
stants. The result (E.l)  is essentially Cardy's result, 15s) but our derivation 
is different from his. 

We write the correlation of an infinitely long strip with finite width L 
in the form 

_['27r'~" ~ a,,,a,r, exp[--2zE(.~(L)+m+rh)y2] 
(r  0) r  Y2))L - \ L ,] L 

n l ,  i f )  ~ 0 

2~ The formula (D.9} was conjectured from model calculations before Cardy explained the 
formula from the point of view of confonnal field theory. ~29~ See, for example, ref. 7 and 
references cited therein. 
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in the same way as in the preceding section. Here 2(L) is related to the 
energy gap AE by 

zl E -  2n2( L ) (E.4) 
L 

Following the argument in Section 2.4, we assume that the scaling law 
in the y~ directions is 

7~F ] qeff[ L ) 

Q(L  'L )  := [  Lsin-~r/LiJ 

(r  0) r 0))L 
- (E.5) 
- ( r  0) r 0 ) )  ~_ 

with an effective critical exponent tl~dL): Similarly, by combining the same 
argument with the expression (2.13), we assume that the scaling law in the 
Y2 direction is given by 

O-(L,L):=[-Lsin~((~tr/L)] "~ 

(r O) r r ))L 
(E.6) 

= (r O) r r)),~ 

To determine .~(L) from the asymptotic form (E.2) of the correlation, 
we consider an "analytic continuation" along the pure imaginary axis with 
respect t o  y2  .22 For the correlations (E.2) and (E.3), we have formally 

(r 0) r iL/2)).:, 

i~/2 ( E. 7 ) 
~ (r O) ~(L/2, 0)) ~ x e -~'/'- x 1 + log[L/(2ro)] 

and 

(r162 iL/2))t=(C(O,O)r -'ix'L' (E.8) 

where we have used that the "spin" s in (E.3) is an integer because of the 
translation inqariance of the system. Similarly, for the scaling functions 
(E.5) and (E.6), we have 

Q( 1/2, L) = Q(i/2, L ) =  - (E.9) 

-,2 Of course, the analyticities of the correlation function (E.2) and of the scaling functions 
have not yet been established. Therefore we use "analytic continuation" in a formal sense. 
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Combining this with (E.5)-(E.8), we have 

[ 1{ i j2 )o 1 - e x p  -rri.2(L)+nir/ • 1 + (E.10) 
2 log[L/(2ro)]  

This implies 

o- 
2.~(L) -1 /  (E.I 1) 

log[ L/( 2ro) ] 

for a large linear dimension L of system. Thus, combining this with (E.4), 
we have (E. 1 ). 

If  we define the effective critical exponent by 

L 
r/edL)=-- dE (E.12) 

7~ 

as an extension of the formula (D.9), then we get 

(9 
r/err(L) ~ r/ (E.13) 

log[L/(2r  0)] 

from (E.11) and (E.4). This is identical to (C.28). In conclusion, we can 
expect that an effective critical exponent r/err is derived from energy gap dE, 
following from the formula (E.12). 

APPENDIX  F. EFFECTIVE CRITICAL EXPONENT qeff OF THE 
SP IN-SP IN  CORRELATION OF THE S P I N - l / 2  
ISOTROPIC HEISENBERG ANTIFERRO-  
M A G N E T I C  CHAIN  

In this appendix, we calculate the effective critical exponent r/e~(L) 
of the spin-spin correlation of the spin-I/2 isotropic Heisenberg 
antiferromagnetic chain of a finite length L by using a similar formula to 
(E.12). z3 For  this purpose, we introduce the six-vertex model, which is the 
two-dimensional classical system corresponding to the spin-l/2 isotropic 
Heisenberg antiferromagnetic chain. 

23 However, it is known that the formula (E.12) does not necessarily give a correct exponent 
q for several models under certain conditions, t~3-Ss~ Fortunately, we do not encounter such 
situations. 
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F.1. Transfer Matr ices  in the S ix -Ver tex  Model  

In this section we study properties of transfer matrices of the six-vertex 
model. 

Consider the correlation 

( S ~- SI+,, .)  MxL, T :=  
T r [ S  + S i-+,(Wg) c (TM) L ] 

Tr[  (WM) L (TM) L ] 
(F.1) 

of the six-vertex model " " + x _ .  ,, with M x L vertmes, where S j- := S j  + zS) ,  W M is 
the row-to-row transfer matrix of the six-vertex model, (76'86) and the matrix 
TM shifts any periodic array of the spin states by one lattice unit forward. 
(See Fig. 20.) Here we have introduced the twisted boundary condition for 
convenience of the following calculations. In the limit L T m, as we showed 
in (A.4), we have the spin-spin correlation function 

(F.2) 

with respect to the ground state c~(o) of the spin-l/2 isotropic Heisenberg ~ M  
antiferromagnetic chain of length M, because the transfer matrix WM 
commutes with the translation operator TM. (76J 

�9 

C/.J_/./;C, 
-'/////;, 

I/- /- /- /- /- /- 
1 2 M 

Fig. 20. Lattice for the six-vertex model, and the transfer matrices W MTM and if'^, in the 
vertical and the horizontal directions, respectively. The arrows (lsing spins) of the vertex 
model are placed on each bond (solid line) connecting neighbor sites (solid circles). 
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On the other hand, the correlation ( S  ~-SI+r)MxL, T c a n  be written 
a s  

Tr[ ~ ~'( WN)r ~'~( fTVN) m - ' ]  
( S ~- S T+~) M• = (F.3) 

Tr(I~u) M 

in terms of the diagonal-to-diagonal transfer matrix 

I'V'N : = TN X RN (V.4) 

in the horizontal direction in Fig. 20, where N =  2L, -'4 and the matrix ~ 
shifts any periodic array of the spin states by one lattice unit backward. 
The matrix /~N is given by ts7) 

L 

R^,:= [I  02/-,.-v (V.5) 
I=1  

and 

- ' - " ' "  " " - "  0 ~ + 3 )  (V.6) Qi . j  : =  _~(o-i a)  + a" i a )  - -  

Here (~)", 6~', 6~) is the Pauli matrix at the "site" j ( = 1, 2 ..... 2L), 25 and 

~ +  .__ 1 ~ . v  ' ~ v  af- -- ~(a) -F to) ) (F.7) 

We note that 

where 

[ g'u, gk~'] = 0 (F.8) 

N 
~tot  ~ I S N ~, a~ (F.9) 

j = l  

This implies that the transfer matrix WN can be rewritten in a block- 
diagonal form with the direct sum of matrices as 

N 

r @ /'}'N;~, (F.10) 
k=o 

where the subscript k denotes the restriction to the k-down-spin subspace. 
It is known that the maximum eigenvalue A~:a~. ~ for each block is non- 
degenerate and positive, and that the maximum eigenvalue A~v "'~ of the 
transfer matrix I,~" N is given by the maximum eigenvalue A~:~ ' of the matrix 
VI-ZN; L .(87} 

24 N spins on the bonds  are arranged on a straight line in the vertical direction, as in Fig. 20. 
2s These "sites" correspond to bonds  on a straight line in the vertical direction in Fig. 20. 
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In the limit M T ~ ,  we have 

(S;-S~-+r)L.T:= lim (S?S7+,)M• T 
M T  oo 

{ ~ m a x  ~ + [ ~ / , N )  r ~ - -  -- . . . .  ax --r = , ~ N  , a , ,  a n q5 N ) x ( A  N ) (F.11) 

-- max max where cP N is the eigenvector with the maximum eigenvalue A N of the 
transfer matrix fie N. Further, for a sufficiently large r, we have 

( S ? S 1+ r )  L,T ~ c o n s t  x e - ,~E~ (F.12) 

with the energy gap 

A E  N := log a~;~ - log A~:~ _, (F.13) 

for a fixed N =  2L. 
Since the transfer matrix I,V N is not positive, i.e., the corresponding 

Hamiltonian is not Hermitian, we cannot simply use the scheme of 
Appendix E to calculate the effective exponent r/crr. But, fortunately, we can 
obtain the spectrum of the transfer matrix (I~N) 2 from that of another 
positive transfer matrix k'N, (F.17) below. 

To show this, let us introduce the transfer matrix 

with 

Then we have 

gr N := -~v/~ N (F. 14) 

RN .= T N R N T ;  l (F.15) 

( J ' V N ) 2 =  G X ( ~ ' N )  2 (F.16) 

from the definition (F.4) of the transfer matrix I~N, because the matrix/~N 
commutes with the matrix (~N) 2. Further, the matrix ON also commutes 
with (I'N) 2. In consequence, the spectrum of the matrix (if/N)'- is given by 
that of 0~v except for momentum shifts which come from the translation 
operator I'N" �9 

Next we shall show that the matrix ~'u has exactly the same spectrum 
as the positive matrix ~', (F.17) below. Since the matrix /~N is strictly 
positive from the definition (F.5), we can define the matrices (/~N) ~/2 and 
(RN) -l/'- to be positive. By using these positive matrices, we define the 
transfer matrix ~'N by 

PN := (/~N) m O~kN) -m- (F.17) 

822/83/3-4-28 
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This implies that  the spec t rum of the matr ix  ON is complete ly  equivalent  
to that  of  ~'N- Further ,  f rom the definition (F.14) of  the matr ix  ON, we 
have 

~tN = (/~N)I/2 /~V(/I~N) 1/2 (F. 18) 

This implies that  the matr ix  ~'N is positive. 

F.2. Ca lcu la t ion  of Sound Ve loc i ty  

The aim of  this section is to calculate a sound velocity v,. which 
appears  as a nonuniversal  constant  in the correlations.  

For  a general correlat ion function, the two unit lengths in the two 
directions are not necessarily equal  to each other. This implies that  (E.3) 
must  be replaced with 

( r  0) r  

= a,.a,~, exp 
, , , . I f ,  = o L 

[ -- 21~'/(S "1- n'~ -- '~7~ ) y 1.1 
x exp L (F.19) 

in such a general situation. Here  there appears  an unknown  positive con- 
stant v.,. called the sound velocity. Similarly, (E.12) must  be replaced with 

L d E  
q~n(L) = - x - -  (F.20) 

7t" U s 

Since the sound velocity v.,. is nonuniversal ,  we must  calculate v,., in order  
to obta in  the effective critical exponent  P1~fr by using (F.20). 

To  calculate the sound velocity v,. for the transfer matr ix  I'~'N, we con- 
sider the system 26 defined by the transfer matr ix  U'N and calculate the 
sound velocity u,. for UN. Then  the sound velocity v.,. for the transfer  matr ix  
ITvN is obta ined from u.,.. In fact, f rom (F.16), we have 

{ xp[ - -~- = exp [ 21r -----~u,.~x2] (F.21) 

This implies c,. = u.,.. 

.,6 A similar system appears as tile path integral form of the partition function of tile spin-I/2 
Heisenberg chain when one uses the "Trotter decomposition" for the density matrixJ sS'sT~ 
The decomposition is often called the "checkerbord (CB) decomposition. "'~27~ 
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Qj,j+t 

717 

I Qij§ 

Fig. 21. Local transfer matrices Qi.}+I and QH+J in the horizontal and vertical directions, 
respectivelY. 

The advantage of the use of the transfer matrix L'[N is that the corre- 
sponding system has an invariance under the g/2 rotation of the lattice. (89~ 

To show this invariance, we first define the local transfer matrix Qj.j+ 
in the vertical direction in Fig. 20 by 

(~j, (~ I Qj.j+, IE/+ t, ~+ 1) : ( - ~ j ,  ~j+ t I Qj.j+, I~;, ~-+,) (F.22) 

with the matrix Q/../+ 1, (F.6), where ]fj) is the system of orthonormal basis 
of the eigenvectors of the matrix (~} with the eigenvalues f j=-I-1 at the 
sitej. (See Fig. 21.) Then one can take the matrix Q;.j to have the same 
expression as Qi, j, (F.6), in terms of the Pauli matrix. This implies that, 
from (F.14), (F.15), and (F.5), the system defined by the transfer matrix 
UN in (F.14) is invariant under the g/2 rotation of the lattice. (See Fig. 22.) 
This property leads also to the invariance of correlations under the g/2 
rotation. In fact, the correlation 

-+ ~-  ca Tr[f~-tr~+ ~( 0N)L ] 
(al al+,.)L• 

Tr(UN) L 

(F.23) 

can be expressed also as 

Tr[K ~-(UN) r a l  ( UN) L -  r] < a ~ -  " -  c .  
0"1 + r )  L• L -- 

Tr(ON) L 
(F.24) 

This implies that the unit lengths of the scales in two directions are equal 
to each other. In other words, the sound velocity satisfies u,.= 1. Conse- 
quently, we get v.,. = us = 1. 
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ON 

Fig. 22. The system is invariant under the n/2 rotation. 

F.3. Be the  Ansa tz  for  T rans fe r  M a t r i x  14/N 

In order to obtain the eigenvalues A~:~ and A~v;~_~ of the transfer 
matrix I'VN, we use the Bethe ansatz method, c9~ As is well known, the six- 
vertex model is "solvable ''~9~'9z~ in the sense that one can reduce an eigen- 
value problem of a transfer matrix to solving a system of algebraic equa- 
tions which are called Bethe ansatz equations. By combining the results of 
A~v:~ and A,~:~]_l in this section with the formulas (F.13) and (F.20) and 
with the result v~ = 1 for the sound velocity in the preceding section, we get 
the desired effective critical exponent qe~L) of the spin-spin correlation for 
the spin-l/2 isotropic Heisenberg antiferromagnetic chain. 

Following the Bethe's original idea, ~9~ we assume that the eigen- 
vectors of I~N; k have the Bethe ansatz form t93'87) 

~k "= ~ ~ApF(ze l ,Y , ) '"F( zek ,  Yk) qS(Y, ..... Yk) (F.25) 
1 ~ < ) ' 1 <  " - -  < )'l,. <~ N P 

with 

(a .z~Y + 1 )/2 (y  = odd) 
�9 - ~  J ~ (F.26) F ( z , y ) . -  z~,/2 (y = even) 
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( j =  1, 2 ..... k; k = 0 ,  1, 2,..., 2L), where O(y~ ..... yk) is the state with all the 
spins up except those k spins at the sites y~ ..... Yk; the summations run over 
all the possible distributions of k down spins and all the permutations P of 
(1, 2 ..... k). The numbers zj, aj, and Ae are determined by 

( j + 3  
(F.27) 

( j (( j -  l) 

1 
a j = ~  ((j-- l) (F.28) 

and 

A ( p I , . . . o P ( j +  1) ,Pj , . , . ,Pk)  _ _ 

A ( p  l , . . . ,Pj,  P ( j  + I ) , . . . ,Pk)  

,(efietj+ l) + 2(ej + 1 
(efietj  + 11 + 2(eu+ l)+ 1 

(F.29) 

where Pl is the number which replaces l under this permutation P. The 
complex numbers (~ ..... (k are determined by the system of the Bethe ansatz 
equations 

I (j+3 ] L = ( _ l ) k _ , h ( f i t + 2 ( t + l  
(j((--(-~-- 1)J ,=, ( f i t +  2( j+  1 

(F.30) 

with j = 1, 2 ..... k. The eigenvalues of the transfer matrix ff'u:~ are given by 

Au;~ = (1 (2""  (k (F.31) 

A clear presentation of the physics underlying the Bethe ansatz 
method can be found in Sutherland's lecture notes/94) The basis of the 
above Bethe ansatz calculation is summarized in the following theorem, 
which is proved in ref. 87. 

T h e o r e m  1. t87~ The maximum eigenvalue A~v;ai. ~ of the transfer 
matrix I'VN: k can be obtained from AN:k in (F.31) with a solution ((l ..... (k) 
to the Bethe ansatz equations (F.30). 

In order to solve the system of the Bethe ansatz equations (F.30), we 
have to resort to numerical calculations. For this purpose, it is convenient 
to introduce variables pj ( j =  l, 2,..., k) which are defined by 

3i/4 -- pj (F.32) 
(J i/4 + pj 
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We note that 

and 

~j({j-- 1 ) exp --2i tan-~(4pj) -- 2i tan -~ (F.33) 

( j ( / +  2( /+  1 _ exp[ - 2 i  tan - l ( p j _  P/)] (F.34) 
Cj , + 2r + 1 

In terms of&,  the Bethe ansatz equations (F.30) and the eigenvalues AN;k 
in (F.31) can be rewritten as 

(4PJ'~=:I 1 ~ tan- ' (pj-p,)  (F.35) t a n - ~ ( 4 P s ) + t a n - ~ \ 3 J  L J+Z~=~ 

and 

1 k [ (3/4)2 + p!]  
log A U;k = ~ I=~l log [ ~ ~ PTJ 

where 

+ i ~  I t a n - ~ ( - ~ ) + t a n - l ( 4 p l ) ]  
/ = 1  

(F.36) 

Ij = (half-~ integer, 
Onteger, 

k = even 
(F.37) 

k = odd 

Here, in particular, it is known 187~ that the solution for 

k + l  
lj= 2 t-j (F.38) 

( j =  1, 2 ..... k) leads to the maximum eigenvalue A~:"~'. Then we have 

log A~v:" ~ = log (I/4) 2 + PIJ 

by using the Bethe ansatz equations (F.35). 
To obtain the maximum eigenvalues A~;a~ and A~v:~_ ~ in the formula 

(F.13), we solved (F.35) with. (F.38) for k=L,  L - 1  by using numerical 
iteration method/87) 

Using the formulas (F.13) and (F.20) with these numerical results 
max max AN: L, AN:Z_ I, and the result v,.= 1 in the preceding section, we obtain 

numerically the effective critical exponent r/e~(L ) of the spin-spin correla- 
tion for the spin-I/2 isotropic Heisenberg antiferromagnetic chain. 
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APPENDIX G. CORRELATION FUNCTIONS OF ONE- 
D IMENSIONAL Q U A N T U M  SYSTEMS AT 
FINITE TEMPERATURES 

In this appendix, we treat a conformally invariant one-dimensional 
quantum system at low temperatures. The results in this appendix should 
be well known, but have not been written down explicitly as far as we 
know. 

Consider a two-point correlation of the system 

<~(0, O) q~(),, Y2))L (fl)--Tr[q~(O) e--"2'r~(y,)eY2~re-P~'] (G.1) 
' Tr e - P " r  

where fl is the inverse temperature. Using the path integral idea, we trans- 
form this correlation function into that of a two-dimensional classical 
system. For example, the spin-spin correlation of the spin-l/2 Heisenberg 
chain is mapped into a correlation function of the six-vertex model, css) 
Then, as Affleck pointed out, ~95) the inverse temperature fl can be inter- 
preted as a finite side of a rectangle in the two-dimensional classical system. 
Therefore Cardy's method can be applied also to correlations of the two- 
dimensional classical system. Actually, in the same way as in Section 2.2, 
we have wS} 

~ zc ~" {sinh[x(y,  1 ~2h (g(O, O) ~(y~, Y2))~ (fl) = A \v'f lJ + iy2)/(v'fl)] ) 

(G.2) • 

[s inh[g(yl  -- iy y (  v'fl) ] ) 

in the thermodynamic limit L.T oo, where v' is a positive constant and A is 
a constant. To get the expression of the correlation with real time t, we 
replace Y2 by -iv,,.t as 

( rt "~" ( 1 -~2h 
(~b(O, O)~b(y, t ) )~  (fl)= A \v'flJ sinh[g(y + v,.t)/(v'fl)]J 

x sinh[n(y-v., . t) /(v 'f l)]  (G.3) 

where ~(y, t ) : = ~ ( y ,  -iv,.t), and vs is the sound velocity. In the zero- 
temperature limit, we have 

( (~ (O 'O)~b(Y ' t ) )~ (~ )=Aky+v . , . t /  \ y - v , t /  (G.4) 
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For t = 0 and large y, we have 

(2~Z)xe-Y/r ( r O) r O) ) ~ (fl)=A -~ 

with the correlation length 

Koma and Mizukoshi 

(G.5) 

�9 v'fl ( G . 6 )  ~(p)  . =  - -  

Immediately, from (G.3) and (G.4), we have the scaling law as 

<r O) r t)>~o (fl) ~" ~ ( y +  v/)/(v'fl! ~2,, 
(r 0) r t ) ) ~  (oo) [sinh[~(y+vst)/(vfl)]J 

f ~(y- vst)/(v'p) )~ 
• ~sinh-'~(-y-v/)/(v'fl)]J ~ 

(G.7) 

Consider the Fourier transform of the correlation (G.3) as 

; I\ d(q, co) := dy dt elq" +'~~ r 01 r t)> ~ ( /~)  (G.8) 
- - o o  

The quantity d(q, co) is related directly to neutron scattering experiments. 
We assume 2h, 2/~ < 1. Then we have 

(~(0, 0) ,-~ const x/~2-~ (G.9) 

for q = co = 0 and low temperatures. 
Next we consider the case that there appear logarithmic corrections to 

the power decay of a correlation. For simplicity, in the rest of this 
appendix, we assume that the correlation behaves as 

(~b(0, 0) r 0))~ (~ )~  A [l~176 (G.10) 
yq 

for a large distance y and at t - -0 ,  where r 0 is a positive constant. 
Using the thermal Bethe ansatz method, (Sv" 17) Nomura and Yamada (56) 

calculated numerically the correlation length ~(fl) of the spin-spin correla- 
tion of the spin-l/2 isotropic Heisenberg antiferromagnetic chain at low 
temperatures. Their result is 

1 
r/~(p) (G. 11 ) 

~(P) vsP 
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with the effective critical exponent 

o" 
theft) =~ / + (G.12) 

log(fl/flo) 

for large fl, where r/= 1, a = 1/2, and flo is a positive constant. Clearly, their 
result (G.11) corresponds to (G.6). Further, their result (G.12) can be 
obtained by formally replacing L/(2ro) by fl/flo in (E.13). This implies that 
the interpretation of fl as a finite width of the system is consistent with the 
result (G.I2). A similar result to (G.II) for the Hubbard chain at half- 
filling was obtained by Tsunetsugu. (57) 

Instead of the scaling law (G.7), we expect the scaling law 

(~b(O, O) r t))o~ (fl) 

~_ ~ rc(y + v / ) / ( v ' f l )  }2h~ta) 

- (sinh[r~(y + v,t)/(v ' f l)] 

f n ( y  -- v~.t)/(v'fl) -} 2aoa, p) 
X . 

) smh[ n ( y -  v , t ) / (v ' f l ) ] ;  

x (r O) r t))o~ (oo) (G.13) 

which is obtained by replacing the scaling dimensions h and/~ in (G.7) by 
effective ones hr and f*eu(fl). 

Further, we expect that there appear logarithmic corrections to the 
power in (G.9) as 27 

0(0, 0) ~ const x f12- ~ x [log(v'fl/ro)] ~ (G.14) 

We shall show (G.14) in the following. 
Unlike the correlation (G.4), the correlation at zero temperature 

would have logarithmic corrections as 

(r O) r t ) ) ~  (oo) 

( ( 1 
= A  • - -  x C ( y + v / ,  y - v d )  (G.15) 

\ y  + vs t /  \ y - -  v~.t/ 

because the correlation (G.IO) has a logarithmic correction. Here the 
function C is a logarithmic correction which satisfies 

C(y, y)  ~ [log(y/ro) ] ~ (G.16) 

for large y. 

27 A similar anomaly was observed in the uniform susceptibilities of  the Bethe-ansatz solvable 
Heisenberg antiferromagnetic chains. ~gm 
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Combining (G.15) with (G.13), we obtain the desired result (G.14) 
under the assumption that 

C[(y+tL,.t)/p,  ( y - v s t ) / p  ] ~ {log[ 1/(r0p)]} ~ (G.17) 

for a small, positive p, a fixed y, and a fixed t. The assumption (G.17) holds 
if C does not behave pathologically. 
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